// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2018 - All Rights Reserved * Author: Ludovic.barre@st.com for STMicroelectronics. */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/iopoll.h> #include <linux/mmc/host.h> #include <linux/mmc/card.h> #include <linux/of_address.h> #include <linux/reset.h> #include <linux/scatterlist.h> #include "mmci.h" #define SDMMC_LLI_BUF_LEN PAGE_SIZE #define DLYB_CR 0x0 #define DLYB_CR_DEN BIT(0) #define DLYB_CR_SEN BIT(1) #define DLYB_CFGR 0x4 #define DLYB_CFGR_SEL_MASK GENMASK(3, 0) #define DLYB_CFGR_UNIT_MASK GENMASK(14, 8) #define DLYB_CFGR_LNG_MASK GENMASK(27, 16) #define DLYB_CFGR_LNGF BIT(31) #define DLYB_NB_DELAY 11 #define DLYB_CFGR_SEL_MAX (DLYB_NB_DELAY + 1) #define DLYB_CFGR_UNIT_MAX 127 #define DLYB_LNG_TIMEOUT_US 1000 #define SDMMC_VSWEND_TIMEOUT_US 10000 #define SYSCFG_DLYBSD_CR 0x0 #define DLYBSD_CR_EN BIT(0) #define DLYBSD_CR_RXTAPSEL_MASK GENMASK(6, 1) #define DLYBSD_TAPSEL_NB 32 #define DLYBSD_BYP_EN BIT(16) #define DLYBSD_BYP_CMD GENMASK(21, 17) #define DLYBSD_ANTIGLITCH_EN BIT(22) #define SYSCFG_DLYBSD_SR 0x4 #define DLYBSD_SR_LOCK BIT(0) #define DLYBSD_SR_RXTAPSEL_ACK BIT(1) #define DLYBSD_TIMEOUT_1S_IN_US 1000000 struct sdmmc_lli_desc { u32 idmalar; u32 idmabase; u32 idmasize; }; struct sdmmc_idma { dma_addr_t sg_dma; void *sg_cpu; dma_addr_t bounce_dma_addr; void *bounce_buf; bool use_bounce_buffer; }; struct sdmmc_dlyb; struct sdmmc_tuning_ops { int (*dlyb_enable)(struct sdmmc_dlyb *dlyb); void (*set_input_ck)(struct sdmmc_dlyb *dlyb); int (*tuning_prepare)(struct mmci_host *host); int (*set_cfg)(struct sdmmc_dlyb *dlyb, int unit __maybe_unused, int phase, bool sampler __maybe_unused); }; struct sdmmc_dlyb { void __iomem *base; u32 unit; u32 max; struct sdmmc_tuning_ops *ops; }; static int sdmmc_idma_validate_data(struct mmci_host *host, struct mmc_data *data) { struct sdmmc_idma *idma = host->dma_priv; struct device *dev = mmc_dev(host->mmc); struct scatterlist *sg; int i; /* * idma has constraints on idmabase & idmasize for each element * excepted the last element which has no constraint on idmasize */ idma->use_bounce_buffer = false; for_each_sg(data->sg, sg, data->sg_len - 1, i) { if (!IS_ALIGNED(sg->offset, sizeof(u32)) || !IS_ALIGNED(sg->length, host->variant->stm32_idmabsize_align)) { dev_dbg(mmc_dev(host->mmc), "unaligned scatterlist: ofst:%x length:%d\n", data->sg->offset, data->sg->length); goto use_bounce_buffer; } } if (!IS_ALIGNED(sg->offset, sizeof(u32))) { dev_dbg(mmc_dev(host->mmc), "unaligned last scatterlist: ofst:%x length:%d\n", data->sg->offset, data->sg->length); goto use_bounce_buffer; } return 0; use_bounce_buffer: if (!idma->bounce_buf) { idma->bounce_buf = dmam_alloc_coherent(dev, host->mmc->max_req_size, &idma->bounce_dma_addr, GFP_KERNEL); if (!idma->bounce_buf) { dev_err(dev, "Unable to map allocate DMA bounce buffer.\n"); return -ENOMEM; } } idma->use_bounce_buffer = true; return 0; } static int _sdmmc_idma_prep_data(struct mmci_host *host, struct mmc_data *data) { struct sdmmc_idma *idma = host->dma_priv; if (idma->use_bounce_buffer) { if (data->flags & MMC_DATA_WRITE) { unsigned int xfer_bytes = data->blksz * data->blocks; sg_copy_to_buffer(data->sg, data->sg_len, idma->bounce_buf, xfer_bytes); dma_wmb(); } } else { int n_elem; n_elem = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, mmc_get_dma_dir(data)); if (!n_elem) { dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n"); return -EINVAL; } } return 0; } static int sdmmc_idma_prep_data(struct mmci_host *host, struct mmc_data *data, bool next) { /* Check if job is already prepared. */ if (!next && data->host_cookie == host->next_cookie) return 0; return _sdmmc_idma_prep_data(host, data); } static void sdmmc_idma_unprep_data(struct mmci_host *host, struct mmc_data *data, int err) { struct sdmmc_idma *idma = host->dma_priv; if (idma->use_bounce_buffer) { if (data->flags & MMC_DATA_READ) { unsigned int xfer_bytes = data->blksz * data->blocks; sg_copy_from_buffer(data->sg, data->sg_len, idma->bounce_buf, xfer_bytes); } } else { dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, mmc_get_dma_dir(data)); } } static int sdmmc_idma_setup(struct mmci_host *host) { struct sdmmc_idma *idma; struct device *dev = mmc_dev(host->mmc); idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL); if (!idma) return -ENOMEM; host->dma_priv = idma; if (host->variant->dma_lli) { idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN, &idma->sg_dma, GFP_KERNEL); if (!idma->sg_cpu) { dev_err(dev, "Failed to alloc IDMA descriptor\n"); return -ENOMEM; } host->mmc->max_segs = SDMMC_LLI_BUF_LEN / sizeof(struct sdmmc_lli_desc); host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask; host->mmc->max_req_size = SZ_1M; } else { host->mmc->max_segs = 1; host->mmc->max_seg_size = host->mmc->max_req_size; } return dma_set_max_seg_size(dev, host->mmc->max_seg_size); } static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl) { struct sdmmc_idma *idma = host->dma_priv; struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu; struct mmc_data *data = host->data; struct scatterlist *sg; int i; if (!host->variant->dma_lli || data->sg_len == 1 || idma->use_bounce_buffer) { u32 dma_addr; if (idma->use_bounce_buffer) dma_addr = idma->bounce_dma_addr; else dma_addr = sg_dma_address(data->sg); writel_relaxed(dma_addr, host->base + MMCI_STM32_IDMABASE0R); writel_relaxed(MMCI_STM32_IDMAEN, host->base + MMCI_STM32_IDMACTRLR); return 0; } for_each_sg(data->sg, sg, data->sg_len, i) { desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc); desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS | MMCI_STM32_ABR; desc[i].idmabase = sg_dma_address(sg); desc[i].idmasize = sg_dma_len(sg); } /* notice the end of link list */ desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA; dma_wmb(); writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR); writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR); writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R); writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER); writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN, host->base + MMCI_STM32_IDMACTRLR); return 0; } static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data) { writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR); if (!data->host_cookie) sdmmc_idma_unprep_data(host, data, 0); } static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired) { unsigned int clk = 0, ddr = 0; if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 || host->mmc->ios.timing == MMC_TIMING_UHS_DDR50) ddr = MCI_STM32_CLK_DDR; /* * cclk = mclk / (2 * clkdiv) * clkdiv 0 => bypass * in ddr mode bypass is not possible */ if (desired) { if (desired >= host->mclk && !ddr) { host->cclk = host->mclk; } else { clk = DIV_ROUND_UP(host->mclk, 2 * desired); if (clk > MCI_STM32_CLK_CLKDIV_MSK) clk = MCI_STM32_CLK_CLKDIV_MSK; host->cclk = host->mclk / (2 * clk); } } else { /* * while power-on phase the clock can't be define to 0, * Only power-off and power-cyc deactivate the clock. * if desired clock is 0, set max divider */ clk = MCI_STM32_CLK_CLKDIV_MSK; host->cclk = host->mclk / (2 * clk); } /* Set actual clock for debug */ if (host->mmc->ios.power_mode == MMC_POWER_ON) host->mmc->actual_clock = host->cclk; else host->mmc->actual_clock = 0; if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) clk |= MCI_STM32_CLK_WIDEBUS_4; if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) clk |= MCI_STM32_CLK_WIDEBUS_8; clk |= MCI_STM32_CLK_HWFCEN; clk |= host->clk_reg_add; clk |= ddr; if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50) clk |= MCI_STM32_CLK_BUSSPEED; mmci_write_clkreg(host, clk); } static void sdmmc_dlyb_mp15_input_ck(struct sdmmc_dlyb *dlyb) { if (!dlyb || !dlyb->base) return; /* Output clock = Input clock */ writel_relaxed(0, dlyb->base + DLYB_CR); } static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr) { struct mmc_ios ios = host->mmc->ios; struct sdmmc_dlyb *dlyb = host->variant_priv; /* adds OF options */ pwr = host->pwr_reg_add; if (dlyb && dlyb->ops->set_input_ck) dlyb->ops->set_input_ck(dlyb); if (ios.power_mode == MMC_POWER_OFF) { /* Only a reset could power-off sdmmc */ reset_control_assert(host->rst); udelay(2); reset_control_deassert(host->rst); /* * Set the SDMMC in Power-cycle state. * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK * are driven low, to prevent the Card from being supplied * through the signal lines. */ mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr); } else if (ios.power_mode == MMC_POWER_ON) { /* * After power-off (reset): the irq mask defined in probe * functionis lost * ault irq mask (probe) must be activated */ writel(MCI_IRQENABLE | host->variant->start_err, host->base + MMCIMASK0); /* preserves voltage switch bits */ pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH); /* * After a power-cycle state, we must set the SDMMC in * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are * driven high. Then we can set the SDMMC to Power-on state */ mmci_write_pwrreg(host, MCI_PWR_OFF | pwr); mdelay(1); mmci_write_pwrreg(host, MCI_PWR_ON | pwr); } } static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host) { u32 datactrl; datactrl = mmci_dctrl_blksz(host); if (host->hw_revision >= 3) { u32 thr = 0; if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104 || host->mmc->ios.timing == MMC_TIMING_MMC_HS200) { thr = ffs(min_t(unsigned int, host->data->blksz, host->variant->fifosize)); thr = min_t(u32, thr, MMCI_STM32_THR_MASK); } writel_relaxed(thr, host->base + MMCI_STM32_FIFOTHRR); } if (host->mmc->card && mmc_card_sdio(host->mmc->card) && host->data->blocks == 1) datactrl |= MCI_DPSM_STM32_MODE_SDIO; else if (host->data->stop && !host->mrq->sbc) datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP; else datactrl |= MCI_DPSM_STM32_MODE_BLOCK; return datactrl; } static bool sdmmc_busy_complete(struct mmci_host *host, struct mmc_command *cmd, u32 status, u32 err_msk) { void __iomem *base = host->base; u32 busy_d0, busy_d0end, mask, sdmmc_status; mask = readl_relaxed(base + MMCIMASK0); sdmmc_status = readl_relaxed(base + MMCISTATUS); busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END; busy_d0 = sdmmc_status & MCI_STM32_BUSYD0; /* complete if there is an error or busy_d0end */ if ((status & err_msk) || busy_d0end) goto complete; /* * On response the busy signaling is reflected in the BUSYD0 flag. * if busy_d0 is in-progress we must activate busyd0end interrupt * to wait this completion. Else this request has no busy step. */ if (busy_d0) { if (!host->busy_status) { writel_relaxed(mask | host->variant->busy_detect_mask, base + MMCIMASK0); host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND); } return false; } complete: if (host->busy_status) { writel_relaxed(mask & ~host->variant->busy_detect_mask, base + MMCIMASK0); host->busy_status = 0; } writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR); return true; } static int sdmmc_dlyb_mp15_enable(struct sdmmc_dlyb *dlyb) { writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR); return 0; } static int sdmmc_dlyb_mp15_set_cfg(struct sdmmc_dlyb *dlyb, int unit, int phase, bool sampler) { u32 cfgr; writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR); cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) | FIELD_PREP(DLYB_CFGR_SEL_MASK, phase); writel_relaxed(cfgr, dlyb->base + DLYB_CFGR); if (!sampler) writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR); return 0; } static int sdmmc_dlyb_mp15_prepare(struct mmci_host *host) { struct sdmmc_dlyb *dlyb = host->variant_priv; u32 cfgr; int i, lng, ret; for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) { dlyb->ops->set_cfg(dlyb, i, DLYB_CFGR_SEL_MAX, true); ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr, (cfgr & DLYB_CFGR_LNGF), 1, DLYB_LNG_TIMEOUT_US); if (ret) { dev_warn(mmc_dev(host->mmc), "delay line cfg timeout unit:%d cfgr:%d\n", i, cfgr); continue; } lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr); if (lng < BIT(DLYB_NB_DELAY) && lng > 0) break; } if (i > DLYB_CFGR_UNIT_MAX) return -EINVAL; dlyb->unit = i; dlyb->max = __fls(lng); return 0; } static int sdmmc_dlyb_mp25_enable(struct sdmmc_dlyb *dlyb) { u32 cr, sr; cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR); cr |= DLYBSD_CR_EN; writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR); return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR, sr, sr & DLYBSD_SR_LOCK, 1, DLYBSD_TIMEOUT_1S_IN_US); } static int sdmmc_dlyb_mp25_set_cfg(struct sdmmc_dlyb *dlyb, int unit __maybe_unused, int phase, bool sampler __maybe_unused) { u32 cr, sr; cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR); cr &= ~DLYBSD_CR_RXTAPSEL_MASK; cr |= FIELD_PREP(DLYBSD_CR_RXTAPSEL_MASK, phase); writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR); return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR, sr, sr & DLYBSD_SR_RXTAPSEL_ACK, 1, DLYBSD_TIMEOUT_1S_IN_US); } static int sdmmc_dlyb_mp25_prepare(struct mmci_host *host) { struct sdmmc_dlyb *dlyb = host->variant_priv; dlyb->max = DLYBSD_TAPSEL_NB; return 0; } static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode) { struct sdmmc_dlyb *dlyb = host->variant_priv; int cur_len = 0, max_len = 0, end_of_len = 0; int phase, ret; for (phase = 0; phase <= dlyb->max; phase++) { ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false); if (ret) { dev_err(mmc_dev(host->mmc), "tuning config failed\n"); return ret; } if (mmc_send_tuning(host->mmc, opcode, NULL)) { cur_len = 0; } else { cur_len++; if (cur_len > max_len) { max_len = cur_len; end_of_len = phase; } } } if (!max_len) { dev_err(mmc_dev(host->mmc), "no tuning point found\n"); return -EINVAL; } if (dlyb->ops->set_input_ck) dlyb->ops->set_input_ck(dlyb); phase = end_of_len - max_len / 2; ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false); if (ret) { dev_err(mmc_dev(host->mmc), "tuning reconfig failed\n"); return ret; } dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n", dlyb->unit, dlyb->max, phase); return 0; } static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode) { struct mmci_host *host = mmc_priv(mmc); struct sdmmc_dlyb *dlyb = host->variant_priv; u32 clk; int ret; if ((host->mmc->ios.timing != MMC_TIMING_UHS_SDR104 && host->mmc->ios.timing != MMC_TIMING_MMC_HS200) || host->mmc->actual_clock <= 50000000) return 0; if (!dlyb || !dlyb->base) return -EINVAL; ret = dlyb->ops->dlyb_enable(dlyb); if (ret) return ret; /* * SDMMC_FBCK is selected when an external Delay Block is needed * with SDR104 or HS200. */ clk = host->clk_reg; clk &= ~MCI_STM32_CLK_SEL_MSK; clk |= MCI_STM32_CLK_SELFBCK; mmci_write_clkreg(host, clk); ret = dlyb->ops->tuning_prepare(host); if (ret) return ret; return sdmmc_dlyb_phase_tuning(host, opcode); } static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host) { /* clear the voltage switch completion flag */ writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR); /* enable Voltage switch procedure */ mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN); } static int sdmmc_post_sig_volt_switch(struct mmci_host *host, struct mmc_ios *ios) { unsigned long flags; u32 status; int ret = 0; spin_lock_irqsave(&host->lock, flags); if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180 && host->pwr_reg & MCI_STM32_VSWITCHEN) { mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH); spin_unlock_irqrestore(&host->lock, flags); /* wait voltage switch completion while 10ms */ ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS, status, (status & MCI_STM32_VSWEND), 10, SDMMC_VSWEND_TIMEOUT_US); writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC, host->base + MMCICLEAR); spin_lock_irqsave(&host->lock, flags); mmci_write_pwrreg(host, host->pwr_reg & ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH)); } spin_unlock_irqrestore(&host->lock, flags); return ret; } static struct mmci_host_ops sdmmc_variant_ops = { .validate_data = sdmmc_idma_validate_data, .prep_data = sdmmc_idma_prep_data, .unprep_data = sdmmc_idma_unprep_data, .get_datactrl_cfg = sdmmc_get_dctrl_cfg, .dma_setup = sdmmc_idma_setup, .dma_start = sdmmc_idma_start, .dma_finalize = sdmmc_idma_finalize, .set_clkreg = mmci_sdmmc_set_clkreg, .set_pwrreg = mmci_sdmmc_set_pwrreg, .busy_complete = sdmmc_busy_complete, .pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch, .post_sig_volt_switch = sdmmc_post_sig_volt_switch, }; static struct sdmmc_tuning_ops dlyb_tuning_mp15_ops = { .dlyb_enable = sdmmc_dlyb_mp15_enable, .set_input_ck = sdmmc_dlyb_mp15_input_ck, .tuning_prepare = sdmmc_dlyb_mp15_prepare, .set_cfg = sdmmc_dlyb_mp15_set_cfg, }; static struct sdmmc_tuning_ops dlyb_tuning_mp25_ops = { .dlyb_enable = sdmmc_dlyb_mp25_enable, .tuning_prepare = sdmmc_dlyb_mp25_prepare, .set_cfg = sdmmc_dlyb_mp25_set_cfg, }; void sdmmc_variant_init(struct mmci_host *host) { struct device_node *np = host->mmc->parent->of_node; void __iomem *base_dlyb; struct sdmmc_dlyb *dlyb; host->ops = &sdmmc_variant_ops; host->pwr_reg = readl_relaxed(host->base + MMCIPOWER); base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL); if (IS_ERR(base_dlyb)) return; dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL); if (!dlyb) return; dlyb->base = base_dlyb; if (of_device_is_compatible(np, "st,stm32mp25-sdmmc2")) dlyb->ops = &dlyb_tuning_mp25_ops; else dlyb->ops = &dlyb_tuning_mp15_ops; host->variant_priv = dlyb; host->mmc_ops->execute_tuning = sdmmc_execute_tuning; }