// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2019 Arm Ltd. #include <linux/arm-smccc.h> #include <linux/kvm_host.h> #include <asm/kvm_emulate.h> #include <kvm/arm_hypercalls.h> #include <kvm/arm_psci.h> #define KVM_ARM_SMCCC_STD_FEATURES \ GENMASK(KVM_REG_ARM_STD_BMAP_BIT_COUNT - 1, 0) #define KVM_ARM_SMCCC_STD_HYP_FEATURES \ GENMASK(KVM_REG_ARM_STD_HYP_BMAP_BIT_COUNT - 1, 0) #define KVM_ARM_SMCCC_VENDOR_HYP_FEATURES \ GENMASK(KVM_REG_ARM_VENDOR_HYP_BMAP_BIT_COUNT - 1, 0) static void kvm_ptp_get_time(struct kvm_vcpu *vcpu, u64 *val) { struct system_time_snapshot systime_snapshot; u64 cycles = ~0UL; u32 feature; /* * system time and counter value must captured at the same * time to keep consistency and precision. */ ktime_get_snapshot(&systime_snapshot); /* * This is only valid if the current clocksource is the * architected counter, as this is the only one the guest * can see. */ if (systime_snapshot.cs_id != CSID_ARM_ARCH_COUNTER) return; /* * The guest selects one of the two reference counters * (virtual or physical) with the first argument of the SMCCC * call. In case the identifier is not supported, error out. */ feature = smccc_get_arg1(vcpu); switch (feature) { case KVM_PTP_VIRT_COUNTER: cycles = systime_snapshot.cycles - vcpu->kvm->arch.timer_data.voffset; break; case KVM_PTP_PHYS_COUNTER: cycles = systime_snapshot.cycles - vcpu->kvm->arch.timer_data.poffset; break; default: return; } /* * This relies on the top bit of val[0] never being set for * valid values of system time, because that is *really* far * in the future (about 292 years from 1970, and at that stage * nobody will give a damn about it). */ val[0] = upper_32_bits(systime_snapshot.real); val[1] = lower_32_bits(systime_snapshot.real); val[2] = upper_32_bits(cycles); val[3] = lower_32_bits(cycles); } static bool kvm_smccc_default_allowed(u32 func_id) { switch (func_id) { /* * List of function-ids that are not gated with the bitmapped * feature firmware registers, and are to be allowed for * servicing the call by default. */ case ARM_SMCCC_VERSION_FUNC_ID: case ARM_SMCCC_ARCH_FEATURES_FUNC_ID: return true; default: /* PSCI 0.2 and up is in the 0:0x1f range */ if (ARM_SMCCC_OWNER_NUM(func_id) == ARM_SMCCC_OWNER_STANDARD && ARM_SMCCC_FUNC_NUM(func_id) <= 0x1f) return true; /* * KVM's PSCI 0.1 doesn't comply with SMCCC, and has * its own function-id base and range */ if (func_id >= KVM_PSCI_FN(0) && func_id <= KVM_PSCI_FN(3)) return true; return false; } } static bool kvm_smccc_test_fw_bmap(struct kvm_vcpu *vcpu, u32 func_id) { struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat; switch (func_id) { case ARM_SMCCC_TRNG_VERSION: case ARM_SMCCC_TRNG_FEATURES: case ARM_SMCCC_TRNG_GET_UUID: case ARM_SMCCC_TRNG_RND32: case ARM_SMCCC_TRNG_RND64: return test_bit(KVM_REG_ARM_STD_BIT_TRNG_V1_0, &smccc_feat->std_bmap); case ARM_SMCCC_HV_PV_TIME_FEATURES: case ARM_SMCCC_HV_PV_TIME_ST: return test_bit(KVM_REG_ARM_STD_HYP_BIT_PV_TIME, &smccc_feat->std_hyp_bmap); case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID: case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID: return test_bit(KVM_REG_ARM_VENDOR_HYP_BIT_FUNC_FEAT, &smccc_feat->vendor_hyp_bmap); case ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID: return test_bit(KVM_REG_ARM_VENDOR_HYP_BIT_PTP, &smccc_feat->vendor_hyp_bmap); default: return false; } } #define SMC32_ARCH_RANGE_BEGIN ARM_SMCCC_VERSION_FUNC_ID #define SMC32_ARCH_RANGE_END ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, \ ARM_SMCCC_SMC_32, \ 0, ARM_SMCCC_FUNC_MASK) #define SMC64_ARCH_RANGE_BEGIN ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, \ ARM_SMCCC_SMC_64, \ 0, 0) #define SMC64_ARCH_RANGE_END ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, \ ARM_SMCCC_SMC_64, \ 0, ARM_SMCCC_FUNC_MASK) static void init_smccc_filter(struct kvm *kvm) { int r; mt_init(&kvm->arch.smccc_filter); /* * Prevent userspace from handling any SMCCC calls in the architecture * range, avoiding the risk of misrepresenting Spectre mitigation status * to the guest. */ r = mtree_insert_range(&kvm->arch.smccc_filter, SMC32_ARCH_RANGE_BEGIN, SMC32_ARCH_RANGE_END, xa_mk_value(KVM_SMCCC_FILTER_HANDLE), GFP_KERNEL_ACCOUNT); WARN_ON_ONCE(r); r = mtree_insert_range(&kvm->arch.smccc_filter, SMC64_ARCH_RANGE_BEGIN, SMC64_ARCH_RANGE_END, xa_mk_value(KVM_SMCCC_FILTER_HANDLE), GFP_KERNEL_ACCOUNT); WARN_ON_ONCE(r); } static int kvm_smccc_set_filter(struct kvm *kvm, struct kvm_smccc_filter __user *uaddr) { const void *zero_page = page_to_virt(ZERO_PAGE(0)); struct kvm_smccc_filter filter; u32 start, end; int r; if (copy_from_user(&filter, uaddr, sizeof(filter))) return -EFAULT; if (memcmp(filter.pad, zero_page, sizeof(filter.pad))) return -EINVAL; start = filter.base; end = start + filter.nr_functions - 1; if (end < start || filter.action >= NR_SMCCC_FILTER_ACTIONS) return -EINVAL; mutex_lock(&kvm->arch.config_lock); if (kvm_vm_has_ran_once(kvm)) { r = -EBUSY; goto out_unlock; } r = mtree_insert_range(&kvm->arch.smccc_filter, start, end, xa_mk_value(filter.action), GFP_KERNEL_ACCOUNT); if (r) goto out_unlock; set_bit(KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED, &kvm->arch.flags); out_unlock: mutex_unlock(&kvm->arch.config_lock); return r; } static u8 kvm_smccc_filter_get_action(struct kvm *kvm, u32 func_id) { unsigned long idx = func_id; void *val; if (!test_bit(KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED, &kvm->arch.flags)) return KVM_SMCCC_FILTER_HANDLE; /* * But where's the error handling, you say? * * mt_find() returns NULL if no entry was found, which just so happens * to match KVM_SMCCC_FILTER_HANDLE. */ val = mt_find(&kvm->arch.smccc_filter, &idx, idx); return xa_to_value(val); } static u8 kvm_smccc_get_action(struct kvm_vcpu *vcpu, u32 func_id) { /* * Intervening actions in the SMCCC filter take precedence over the * pseudo-firmware register bitmaps. */ u8 action = kvm_smccc_filter_get_action(vcpu->kvm, func_id); if (action != KVM_SMCCC_FILTER_HANDLE) return action; if (kvm_smccc_test_fw_bmap(vcpu, func_id) || kvm_smccc_default_allowed(func_id)) return KVM_SMCCC_FILTER_HANDLE; return KVM_SMCCC_FILTER_DENY; } static void kvm_prepare_hypercall_exit(struct kvm_vcpu *vcpu, u32 func_id) { u8 ec = ESR_ELx_EC(kvm_vcpu_get_esr(vcpu)); struct kvm_run *run = vcpu->run; u64 flags = 0; if (ec == ESR_ELx_EC_SMC32 || ec == ESR_ELx_EC_SMC64) flags |= KVM_HYPERCALL_EXIT_SMC; if (!kvm_vcpu_trap_il_is32bit(vcpu)) flags |= KVM_HYPERCALL_EXIT_16BIT; run->exit_reason = KVM_EXIT_HYPERCALL; run->hypercall = (typeof(run->hypercall)) { .nr = func_id, .flags = flags, }; } int kvm_smccc_call_handler(struct kvm_vcpu *vcpu) { struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat; u32 func_id = smccc_get_function(vcpu); u64 val[4] = {SMCCC_RET_NOT_SUPPORTED}; u32 feature; u8 action; gpa_t gpa; action = kvm_smccc_get_action(vcpu, func_id); switch (action) { case KVM_SMCCC_FILTER_HANDLE: break; case KVM_SMCCC_FILTER_DENY: goto out; case KVM_SMCCC_FILTER_FWD_TO_USER: kvm_prepare_hypercall_exit(vcpu, func_id); return 0; default: WARN_RATELIMIT(1, "Unhandled SMCCC filter action: %d\n", action); goto out; } switch (func_id) { case ARM_SMCCC_VERSION_FUNC_ID: val[0] = ARM_SMCCC_VERSION_1_1; break; case ARM_SMCCC_ARCH_FEATURES_FUNC_ID: feature = smccc_get_arg1(vcpu); switch (feature) { case ARM_SMCCC_ARCH_WORKAROUND_1: switch (arm64_get_spectre_v2_state()) { case SPECTRE_VULNERABLE: break; case SPECTRE_MITIGATED: val[0] = SMCCC_RET_SUCCESS; break; case SPECTRE_UNAFFECTED: val[0] = SMCCC_ARCH_WORKAROUND_RET_UNAFFECTED; break; } break; case ARM_SMCCC_ARCH_WORKAROUND_2: switch (arm64_get_spectre_v4_state()) { case SPECTRE_VULNERABLE: break; case SPECTRE_MITIGATED: /* * SSBS everywhere: Indicate no firmware * support, as the SSBS support will be * indicated to the guest and the default is * safe. * * Otherwise, expose a permanent mitigation * to the guest, and hide SSBS so that the * guest stays protected. */ if (cpus_have_final_cap(ARM64_SSBS)) break; fallthrough; case SPECTRE_UNAFFECTED: val[0] = SMCCC_RET_NOT_REQUIRED; break; } break; case ARM_SMCCC_ARCH_WORKAROUND_3: switch (arm64_get_spectre_bhb_state()) { case SPECTRE_VULNERABLE: break; case SPECTRE_MITIGATED: val[0] = SMCCC_RET_SUCCESS; break; case SPECTRE_UNAFFECTED: val[0] = SMCCC_ARCH_WORKAROUND_RET_UNAFFECTED; break; } break; case ARM_SMCCC_HV_PV_TIME_FEATURES: if (test_bit(KVM_REG_ARM_STD_HYP_BIT_PV_TIME, &smccc_feat->std_hyp_bmap)) val[0] = SMCCC_RET_SUCCESS; break; } break; case ARM_SMCCC_HV_PV_TIME_FEATURES: val[0] = kvm_hypercall_pv_features(vcpu); break; case ARM_SMCCC_HV_PV_TIME_ST: gpa = kvm_init_stolen_time(vcpu); if (gpa != INVALID_GPA) val[0] = gpa; break; case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID: val[0] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_0; val[1] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_1; val[2] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_2; val[3] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_3; break; case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID: val[0] = smccc_feat->vendor_hyp_bmap; break; case ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID: kvm_ptp_get_time(vcpu, val); break; case ARM_SMCCC_TRNG_VERSION: case ARM_SMCCC_TRNG_FEATURES: case ARM_SMCCC_TRNG_GET_UUID: case ARM_SMCCC_TRNG_RND32: case ARM_SMCCC_TRNG_RND64: return kvm_trng_call(vcpu); default: return kvm_psci_call(vcpu); } out: smccc_set_retval(vcpu, val[0], val[1], val[2], val[3]); return 1; } static const u64 kvm_arm_fw_reg_ids[] = { KVM_REG_ARM_PSCI_VERSION, KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3, KVM_REG_ARM_STD_BMAP, KVM_REG_ARM_STD_HYP_BMAP, KVM_REG_ARM_VENDOR_HYP_BMAP, }; void kvm_arm_init_hypercalls(struct kvm *kvm) { struct kvm_smccc_features *smccc_feat = &kvm->arch.smccc_feat; smccc_feat->std_bmap = KVM_ARM_SMCCC_STD_FEATURES; smccc_feat->std_hyp_bmap = KVM_ARM_SMCCC_STD_HYP_FEATURES; smccc_feat->vendor_hyp_bmap = KVM_ARM_SMCCC_VENDOR_HYP_FEATURES; init_smccc_filter(kvm); } void kvm_arm_teardown_hypercalls(struct kvm *kvm) { mtree_destroy(&kvm->arch.smccc_filter); } int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu) { return ARRAY_SIZE(kvm_arm_fw_reg_ids); } int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { int i; for (i = 0; i < ARRAY_SIZE(kvm_arm_fw_reg_ids); i++) { if (put_user(kvm_arm_fw_reg_ids[i], uindices++)) return -EFAULT; } return 0; } #define KVM_REG_FEATURE_LEVEL_MASK GENMASK(3, 0) /* * Convert the workaround level into an easy-to-compare number, where higher * values mean better protection. */ static int get_kernel_wa_level(u64 regid) { switch (regid) { case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: switch (arm64_get_spectre_v2_state()) { case SPECTRE_VULNERABLE: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; case SPECTRE_MITIGATED: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL; case SPECTRE_UNAFFECTED: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED; } return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: switch (arm64_get_spectre_v4_state()) { case SPECTRE_MITIGATED: /* * As for the hypercall discovery, we pretend we * don't have any FW mitigation if SSBS is there at * all times. */ if (cpus_have_final_cap(ARM64_SSBS)) return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; fallthrough; case SPECTRE_UNAFFECTED: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; case SPECTRE_VULNERABLE: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; } break; case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: switch (arm64_get_spectre_bhb_state()) { case SPECTRE_VULNERABLE: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL; case SPECTRE_MITIGATED: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_AVAIL; case SPECTRE_UNAFFECTED: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_REQUIRED; } return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL; } return -EINVAL; } int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat; void __user *uaddr = (void __user *)(long)reg->addr; u64 val; switch (reg->id) { case KVM_REG_ARM_PSCI_VERSION: val = kvm_psci_version(vcpu); break; case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK; break; case KVM_REG_ARM_STD_BMAP: val = READ_ONCE(smccc_feat->std_bmap); break; case KVM_REG_ARM_STD_HYP_BMAP: val = READ_ONCE(smccc_feat->std_hyp_bmap); break; case KVM_REG_ARM_VENDOR_HYP_BMAP: val = READ_ONCE(smccc_feat->vendor_hyp_bmap); break; default: return -ENOENT; } if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id))) return -EFAULT; return 0; } static int kvm_arm_set_fw_reg_bmap(struct kvm_vcpu *vcpu, u64 reg_id, u64 val) { int ret = 0; struct kvm *kvm = vcpu->kvm; struct kvm_smccc_features *smccc_feat = &kvm->arch.smccc_feat; unsigned long *fw_reg_bmap, fw_reg_features; switch (reg_id) { case KVM_REG_ARM_STD_BMAP: fw_reg_bmap = &smccc_feat->std_bmap; fw_reg_features = KVM_ARM_SMCCC_STD_FEATURES; break; case KVM_REG_ARM_STD_HYP_BMAP: fw_reg_bmap = &smccc_feat->std_hyp_bmap; fw_reg_features = KVM_ARM_SMCCC_STD_HYP_FEATURES; break; case KVM_REG_ARM_VENDOR_HYP_BMAP: fw_reg_bmap = &smccc_feat->vendor_hyp_bmap; fw_reg_features = KVM_ARM_SMCCC_VENDOR_HYP_FEATURES; break; default: return -ENOENT; } /* Check for unsupported bit */ if (val & ~fw_reg_features) return -EINVAL; mutex_lock(&kvm->arch.config_lock); if (kvm_vm_has_ran_once(kvm) && val != *fw_reg_bmap) { ret = -EBUSY; goto out; } WRITE_ONCE(*fw_reg_bmap, val); out: mutex_unlock(&kvm->arch.config_lock); return ret; } int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(long)reg->addr; u64 val; int wa_level; if (KVM_REG_SIZE(reg->id) != sizeof(val)) return -ENOENT; if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id))) return -EFAULT; switch (reg->id) { case KVM_REG_ARM_PSCI_VERSION: { bool wants_02; wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features); switch (val) { case KVM_ARM_PSCI_0_1: if (wants_02) return -EINVAL; vcpu->kvm->arch.psci_version = val; return 0; case KVM_ARM_PSCI_0_2: case KVM_ARM_PSCI_1_0: case KVM_ARM_PSCI_1_1: if (!wants_02) return -EINVAL; vcpu->kvm->arch.psci_version = val; return 0; } break; } case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: if (val & ~KVM_REG_FEATURE_LEVEL_MASK) return -EINVAL; if (get_kernel_wa_level(reg->id) < val) return -EINVAL; return 0; case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: if (val & ~(KVM_REG_FEATURE_LEVEL_MASK | KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED)) return -EINVAL; /* The enabled bit must not be set unless the level is AVAIL. */ if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) && (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL) return -EINVAL; /* * Map all the possible incoming states to the only two we * really want to deal with. */ switch (val & KVM_REG_FEATURE_LEVEL_MASK) { case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL: case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN: wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; break; case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL: case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED: wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; break; default: return -EINVAL; } /* * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the * other way around. */ if (get_kernel_wa_level(reg->id) < wa_level) return -EINVAL; return 0; case KVM_REG_ARM_STD_BMAP: case KVM_REG_ARM_STD_HYP_BMAP: case KVM_REG_ARM_VENDOR_HYP_BMAP: return kvm_arm_set_fw_reg_bmap(vcpu, reg->id, val); default: return -ENOENT; } return -EINVAL; } int kvm_vm_smccc_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) { switch (attr->attr) { case KVM_ARM_VM_SMCCC_FILTER: return 0; default: return -ENXIO; } } int kvm_vm_smccc_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) { void __user *uaddr = (void __user *)attr->addr; switch (attr->attr) { case KVM_ARM_VM_SMCCC_FILTER: return kvm_smccc_set_filter(kvm, uaddr); default: return -ENXIO; } }