/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Generation of main entry point for the guest, exception handling. * * Copyright (C) 2012 MIPS Technologies, Inc. * Authors: Sanjay Lal <sanjayl@kymasys.com> * * Copyright (C) 2016 Imagination Technologies Ltd. */ #include <linux/kvm_host.h> #include <linux/log2.h> #include <asm/mmu_context.h> #include <asm/msa.h> #include <asm/setup.h> #include <asm/tlbex.h> #include <asm/uasm.h> /* Register names */ #define ZERO 0 #define AT 1 #define V0 2 #define V1 3 #define A0 4 #define A1 5 #if _MIPS_SIM == _MIPS_SIM_ABI32 #define T0 8 #define T1 9 #define T2 10 #define T3 11 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */ #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 #define T0 12 #define T1 13 #define T2 14 #define T3 15 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */ #define S0 16 #define S1 17 #define T9 25 #define K0 26 #define K1 27 #define GP 28 #define SP 29 #define RA 31 /* Some CP0 registers */ #define C0_PWBASE 5, 5 #define C0_HWRENA 7, 0 #define C0_BADVADDR 8, 0 #define C0_BADINSTR 8, 1 #define C0_BADINSTRP 8, 2 #define C0_PGD 9, 7 #define C0_ENTRYHI 10, 0 #define C0_GUESTCTL1 10, 4 #define C0_STATUS 12, 0 #define C0_GUESTCTL0 12, 6 #define C0_CAUSE 13, 0 #define C0_EPC 14, 0 #define C0_EBASE 15, 1 #define C0_CONFIG5 16, 5 #define C0_DDATA_LO 28, 3 #define C0_ERROREPC 30, 0 #define CALLFRAME_SIZ 32 #ifdef CONFIG_64BIT #define ST0_KX_IF_64 ST0_KX #else #define ST0_KX_IF_64 0 #endif static unsigned int scratch_vcpu[2] = { C0_DDATA_LO }; static unsigned int scratch_tmp[2] = { C0_ERROREPC }; enum label_id { label_fpu_1 = 1, label_msa_1, label_return_to_host, label_kernel_asid, label_exit_common, }; UASM_L_LA(_fpu_1) UASM_L_LA(_msa_1) UASM_L_LA(_return_to_host) UASM_L_LA(_kernel_asid) UASM_L_LA(_exit_common) static void *kvm_mips_build_enter_guest(void *addr); static void *kvm_mips_build_ret_from_exit(void *addr); static void *kvm_mips_build_ret_to_guest(void *addr); static void *kvm_mips_build_ret_to_host(void *addr); /* * The version of this function in tlbex.c uses current_cpu_type(), but for KVM * we assume symmetry. */ static int c0_kscratch(void) { return 31; } /** * kvm_mips_entry_setup() - Perform global setup for entry code. * * Perform global setup for entry code, such as choosing a scratch register. * * Returns: 0 on success. * -errno on failure. */ int kvm_mips_entry_setup(void) { /* * We prefer to use KScratchN registers if they are available over the * defaults above, which may not work on all cores. */ unsigned int kscratch_mask = cpu_data[0].kscratch_mask; if (pgd_reg != -1) kscratch_mask &= ~BIT(pgd_reg); /* Pick a scratch register for storing VCPU */ if (kscratch_mask) { scratch_vcpu[0] = c0_kscratch(); scratch_vcpu[1] = ffs(kscratch_mask) - 1; kscratch_mask &= ~BIT(scratch_vcpu[1]); } /* Pick a scratch register to use as a temp for saving state */ if (kscratch_mask) { scratch_tmp[0] = c0_kscratch(); scratch_tmp[1] = ffs(kscratch_mask) - 1; kscratch_mask &= ~BIT(scratch_tmp[1]); } return 0; } static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp, unsigned int frame) { /* Save the VCPU scratch register value in cp0_epc of the stack frame */ UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]); UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame); /* Save the temp scratch register value in cp0_cause of stack frame */ if (scratch_tmp[0] == c0_kscratch()) { UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]); UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame); } } static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp, unsigned int frame) { /* * Restore host scratch register values saved by * kvm_mips_build_save_scratch(). */ UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame); UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]); if (scratch_tmp[0] == c0_kscratch()) { UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame); UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]); } } /** * build_set_exc_base() - Assemble code to write exception base address. * @p: Code buffer pointer. * @reg: Source register (generated code may set WG bit in @reg). * * Assemble code to modify the exception base address in the EBase register, * using the appropriately sized access and setting the WG bit if necessary. */ static inline void build_set_exc_base(u32 **p, unsigned int reg) { if (cpu_has_ebase_wg) { /* Set WG so that all the bits get written */ uasm_i_ori(p, reg, reg, MIPS_EBASE_WG); UASM_i_MTC0(p, reg, C0_EBASE); } else { uasm_i_mtc0(p, reg, C0_EBASE); } } /** * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU. * @addr: Address to start writing code. * * Assemble the start of the vcpu_run function to run a guest VCPU. The function * conforms to the following prototype: * * int vcpu_run(struct kvm_vcpu *vcpu); * * The exit from the guest and return to the caller is handled by the code * generated by kvm_mips_build_ret_to_host(). * * Returns: Next address after end of written function. */ void *kvm_mips_build_vcpu_run(void *addr) { u32 *p = addr; unsigned int i; /* * A0: vcpu */ /* k0/k1 not being used in host kernel context */ UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs)); for (i = 16; i < 32; ++i) { if (i == 24) i = 28; UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1); } /* Save host status */ uasm_i_mfc0(&p, V0, C0_STATUS); UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1); /* Save scratch registers, will be used to store pointer to vcpu etc */ kvm_mips_build_save_scratch(&p, V1, K1); /* VCPU scratch register has pointer to vcpu */ UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]); /* Offset into vcpu->arch */ UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch)); /* * Save the host stack to VCPU, used for exception processing * when we exit from the Guest */ UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1); /* Save the kernel gp as well */ UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1); /* * Setup status register for running the guest in UM, interrupts * are disabled */ UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64); uasm_i_mtc0(&p, K0, C0_STATUS); uasm_i_ehb(&p); /* load up the new EBASE */ UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1); build_set_exc_base(&p, K0); /* * Now that the new EBASE has been loaded, unset BEV, set * interrupt mask as it was but make sure that timer interrupts * are enabled */ uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64); uasm_i_andi(&p, V0, V0, ST0_IM); uasm_i_or(&p, K0, K0, V0); uasm_i_mtc0(&p, K0, C0_STATUS); uasm_i_ehb(&p); p = kvm_mips_build_enter_guest(p); return p; } /** * kvm_mips_build_enter_guest() - Assemble code to resume guest execution. * @addr: Address to start writing code. * * Assemble the code to resume guest execution. This code is common between the * initial entry into the guest from the host, and returning from the exit * handler back to the guest. * * Returns: Next address after end of written function. */ static void *kvm_mips_build_enter_guest(void *addr) { u32 *p = addr; unsigned int i; struct uasm_label labels[2]; struct uasm_reloc relocs[2]; struct uasm_label __maybe_unused *l = labels; struct uasm_reloc __maybe_unused *r = relocs; memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); /* Set Guest EPC */ UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1); UASM_i_MTC0(&p, T0, C0_EPC); /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */ if (cpu_has_ldpte) UASM_i_MFC0(&p, K0, C0_PWBASE); else UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg); UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1); /* * Set up KVM GPA pgd. * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD(): * - call tlbmiss_handler_setup_pgd(mm->pgd) * - write mm->pgd into CP0_PWBase * * We keep S0 pointing at struct kvm so we can load the ASID below. */ UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) - (int)offsetof(struct kvm_vcpu, arch), K1); UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0); UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd); uasm_i_jalr(&p, RA, T9); /* delay slot */ if (cpu_has_htw) UASM_i_MTC0(&p, A0, C0_PWBASE); else uasm_i_nop(&p); /* Set GM bit to setup eret to VZ guest context */ uasm_i_addiu(&p, V1, ZERO, 1); uasm_i_mfc0(&p, K0, C0_GUESTCTL0); uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1); uasm_i_mtc0(&p, K0, C0_GUESTCTL0); if (cpu_has_guestid) { /* * Set root mode GuestID, so that root TLB refill handler can * use the correct GuestID in the root TLB. */ /* Get current GuestID */ uasm_i_mfc0(&p, T0, C0_GUESTCTL1); /* Set GuestCtl1.RID = GuestCtl1.ID */ uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT, MIPS_GCTL1_ID_WIDTH); uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT, MIPS_GCTL1_RID_WIDTH); uasm_i_mtc0(&p, T0, C0_GUESTCTL1); /* GuestID handles dealiasing so we don't need to touch ASID */ goto skip_asid_restore; } /* Root ASID Dealias (RAD) */ /* Save host ASID */ UASM_i_MFC0(&p, K0, C0_ENTRYHI); UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi), K1); /* Set the root ASID for the Guest */ UASM_i_ADDIU(&p, T1, S0, offsetof(struct kvm, arch.gpa_mm.context.asid)); /* t1: contains the base of the ASID array, need to get the cpu id */ /* smp_processor_id */ uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP); /* index the ASID array */ uasm_i_sll(&p, T2, T2, ilog2(sizeof(long))); UASM_i_ADDU(&p, T3, T1, T2); UASM_i_LW(&p, K0, 0, T3); #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE /* * reuse ASID array offset * cpuinfo_mips is a multiple of sizeof(long) */ uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long)); uasm_i_mul(&p, T2, T2, T3); UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask); UASM_i_ADDU(&p, AT, AT, T2); UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT); uasm_i_and(&p, K0, K0, T2); #else uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID); #endif /* Set up KVM VZ root ASID (!guestid) */ uasm_i_mtc0(&p, K0, C0_ENTRYHI); skip_asid_restore: uasm_i_ehb(&p); /* Disable RDHWR access */ uasm_i_mtc0(&p, ZERO, C0_HWRENA); /* load the guest context from VCPU and return */ for (i = 1; i < 32; ++i) { /* Guest k0/k1 loaded later */ if (i == K0 || i == K1) continue; UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1); } #ifndef CONFIG_CPU_MIPSR6 /* Restore hi/lo */ UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1); uasm_i_mthi(&p, K0); UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1); uasm_i_mtlo(&p, K0); #endif /* Restore the guest's k0/k1 registers */ UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1); UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1); /* Jump to guest */ uasm_i_eret(&p); uasm_resolve_relocs(relocs, labels); return p; } /** * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler. * @addr: Address to start writing code. * @handler: Address of common handler (within range of @addr). * * Assemble TLB refill exception fast path handler for guest execution. * * Returns: Next address after end of written function. */ void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler) { u32 *p = addr; struct uasm_label labels[2]; struct uasm_reloc relocs[2]; #ifndef CONFIG_CPU_LOONGSON64 struct uasm_label *l = labels; struct uasm_reloc *r = relocs; #endif memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); /* Save guest k1 into scratch register */ UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); /* Get the VCPU pointer from the VCPU scratch register */ UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); /* Save guest k0 into VCPU structure */ UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1); /* * Some of the common tlbex code uses current_cpu_type(). For KVM we * assume symmetry and just disable preemption to silence the warning. */ preempt_disable(); #ifdef CONFIG_CPU_LOONGSON64 UASM_i_MFC0(&p, K1, C0_PGD); uasm_i_lddir(&p, K0, K1, 3); /* global page dir */ #ifndef __PAGETABLE_PMD_FOLDED uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */ #endif uasm_i_ldpte(&p, K1, 0); /* even */ uasm_i_ldpte(&p, K1, 1); /* odd */ uasm_i_tlbwr(&p); #else /* * Now for the actual refill bit. A lot of this can be common with the * Linux TLB refill handler, however we don't need to handle so many * cases. We only need to handle user mode refills, and user mode runs * with 32-bit addressing. * * Therefore the branch to label_vmalloc generated by build_get_pmde64() * that isn't resolved should never actually get taken and is harmless * to leave in place for now. */ #ifdef CONFIG_64BIT build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ #else build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ #endif /* we don't support huge pages yet */ build_get_ptep(&p, K0, K1); build_update_entries(&p, K0, K1); build_tlb_write_entry(&p, &l, &r, tlb_random); #endif preempt_enable(); /* Get the VCPU pointer from the VCPU scratch register again */ UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); /* Restore the guest's k0/k1 registers */ UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1); uasm_i_ehb(&p); UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); /* Jump to guest */ uasm_i_eret(&p); return p; } /** * kvm_mips_build_exception() - Assemble first level guest exception handler. * @addr: Address to start writing code. * @handler: Address of common handler (within range of @addr). * * Assemble exception vector code for guest execution. The generated vector will * branch to the common exception handler generated by kvm_mips_build_exit(). * * Returns: Next address after end of written function. */ void *kvm_mips_build_exception(void *addr, void *handler) { u32 *p = addr; struct uasm_label labels[2]; struct uasm_reloc relocs[2]; struct uasm_label *l = labels; struct uasm_reloc *r = relocs; memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); /* Save guest k1 into scratch register */ UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); /* Get the VCPU pointer from the VCPU scratch register */ UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch)); /* Save guest k0 into VCPU structure */ UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1); /* Branch to the common handler */ uasm_il_b(&p, &r, label_exit_common); uasm_i_nop(&p); uasm_l_exit_common(&l, handler); uasm_resolve_relocs(relocs, labels); return p; } /** * kvm_mips_build_exit() - Assemble common guest exit handler. * @addr: Address to start writing code. * * Assemble the generic guest exit handling code. This is called by the * exception vectors (generated by kvm_mips_build_exception()), and calls * kvm_mips_handle_exit(), then either resumes the guest or returns to the host * depending on the return value. * * Returns: Next address after end of written function. */ void *kvm_mips_build_exit(void *addr) { u32 *p = addr; unsigned int i; struct uasm_label labels[3]; struct uasm_reloc relocs[3]; struct uasm_label *l = labels; struct uasm_reloc *r = relocs; memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); /* * Generic Guest exception handler. We end up here when the guest * does something that causes a trap to kernel mode. * * Both k0/k1 registers will have already been saved (k0 into the vcpu * structure, and k1 into the scratch_tmp register). * * The k1 register will already contain the kvm_vcpu_arch pointer. */ /* Start saving Guest context to VCPU */ for (i = 0; i < 32; ++i) { /* Guest k0/k1 saved later */ if (i == K0 || i == K1) continue; UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1); } #ifndef CONFIG_CPU_MIPSR6 /* We need to save hi/lo and restore them on the way out */ uasm_i_mfhi(&p, T0); UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1); uasm_i_mflo(&p, T0); UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1); #endif /* Finally save guest k1 to VCPU */ uasm_i_ehb(&p); UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]); UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1); /* Now that context has been saved, we can use other registers */ /* Restore vcpu */ UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]); /* * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process * the exception */ UASM_i_MFC0(&p, K0, C0_EPC); UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1); UASM_i_MFC0(&p, K0, C0_BADVADDR); UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr), K1); uasm_i_mfc0(&p, K0, C0_CAUSE); uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1); if (cpu_has_badinstr) { uasm_i_mfc0(&p, K0, C0_BADINSTR); uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badinstr), K1); } if (cpu_has_badinstrp) { uasm_i_mfc0(&p, K0, C0_BADINSTRP); uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badinstrp), K1); } /* Now restore the host state just enough to run the handlers */ /* Switch EBASE to the one used by Linux */ /* load up the host EBASE */ uasm_i_mfc0(&p, V0, C0_STATUS); uasm_i_lui(&p, AT, ST0_BEV >> 16); uasm_i_or(&p, K0, V0, AT); uasm_i_mtc0(&p, K0, C0_STATUS); uasm_i_ehb(&p); UASM_i_LA_mostly(&p, K0, (long)&ebase); UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0); build_set_exc_base(&p, K0); if (raw_cpu_has_fpu) { /* * If FPU is enabled, save FCR31 and clear it so that later * ctc1's don't trigger FPE for pending exceptions. */ uasm_i_lui(&p, AT, ST0_CU1 >> 16); uasm_i_and(&p, V1, V0, AT); uasm_il_beqz(&p, &r, V1, label_fpu_1); uasm_i_nop(&p); uasm_i_cfc1(&p, T0, 31); uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31), K1); uasm_i_ctc1(&p, ZERO, 31); uasm_l_fpu_1(&l, p); } if (cpu_has_msa) { /* * If MSA is enabled, save MSACSR and clear it so that later * instructions don't trigger MSAFPE for pending exceptions. */ uasm_i_mfc0(&p, T0, C0_CONFIG5); uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */ uasm_il_beqz(&p, &r, T0, label_msa_1); uasm_i_nop(&p); uasm_i_cfcmsa(&p, T0, MSA_CSR); uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr), K1); uasm_i_ctcmsa(&p, MSA_CSR, ZERO); uasm_l_msa_1(&l, p); } /* Restore host ASID */ if (!cpu_has_guestid) { UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi), K1); UASM_i_MTC0(&p, K0, C0_ENTRYHI); } /* * Set up normal Linux process pgd. * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD(): * - call tlbmiss_handler_setup_pgd(mm->pgd) * - write mm->pgd into CP0_PWBase */ UASM_i_LW(&p, A0, offsetof(struct kvm_vcpu_arch, host_pgd), K1); UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd); uasm_i_jalr(&p, RA, T9); /* delay slot */ if (cpu_has_htw) UASM_i_MTC0(&p, A0, C0_PWBASE); else uasm_i_nop(&p); /* Clear GM bit so we don't enter guest mode when EXL is cleared */ uasm_i_mfc0(&p, K0, C0_GUESTCTL0); uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1); uasm_i_mtc0(&p, K0, C0_GUESTCTL0); /* Save GuestCtl0 so we can access GExcCode after CPU migration */ uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1); if (cpu_has_guestid) { /* * Clear root mode GuestID, so that root TLB operations use the * root GuestID in the root TLB. */ uasm_i_mfc0(&p, T0, C0_GUESTCTL1); /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */ uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT, MIPS_GCTL1_RID_WIDTH); uasm_i_mtc0(&p, T0, C0_GUESTCTL1); } /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */ uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE)); uasm_i_and(&p, V0, V0, AT); uasm_i_lui(&p, AT, ST0_CU0 >> 16); uasm_i_or(&p, V0, V0, AT); #ifdef CONFIG_64BIT uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX); #endif uasm_i_mtc0(&p, V0, C0_STATUS); uasm_i_ehb(&p); /* Load up host GP */ UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1); /* Need a stack before we can jump to "C" */ UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1); /* Saved host state */ UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs)); /* * XXXKYMA do we need to load the host ASID, maybe not because the * kernel entries are marked GLOBAL, need to verify */ /* Restore host scratch registers, as we'll have clobbered them */ kvm_mips_build_restore_scratch(&p, K0, SP); /* Restore RDHWR access */ UASM_i_LA_mostly(&p, K0, (long)&hwrena); uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0); uasm_i_mtc0(&p, K0, C0_HWRENA); /* Jump to handler */ /* * XXXKYMA: not sure if this is safe, how large is the stack?? * Now jump to the kvm_mips_handle_exit() to see if we can deal * with this in the kernel */ uasm_i_move(&p, A0, S0); UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit); uasm_i_jalr(&p, RA, T9); UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ); uasm_resolve_relocs(relocs, labels); p = kvm_mips_build_ret_from_exit(p); return p; } /** * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler. * @addr: Address to start writing code. * * Assemble the code to handle the return from kvm_mips_handle_exit(), either * resuming the guest or returning to the host depending on the return value. * * Returns: Next address after end of written function. */ static void *kvm_mips_build_ret_from_exit(void *addr) { u32 *p = addr; struct uasm_label labels[2]; struct uasm_reloc relocs[2]; struct uasm_label *l = labels; struct uasm_reloc *r = relocs; memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); /* Return from handler Make sure interrupts are disabled */ uasm_i_di(&p, ZERO); uasm_i_ehb(&p); /* * XXXKYMA: k0/k1 could have been blown away if we processed * an exception while we were handling the exception from the * guest, reload k1 */ uasm_i_move(&p, K1, S0); UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch)); /* * Check return value, should tell us if we are returning to the * host (handle I/O etc)or resuming the guest */ uasm_i_andi(&p, T0, V0, RESUME_HOST); uasm_il_bnez(&p, &r, T0, label_return_to_host); uasm_i_nop(&p); p = kvm_mips_build_ret_to_guest(p); uasm_l_return_to_host(&l, p); p = kvm_mips_build_ret_to_host(p); uasm_resolve_relocs(relocs, labels); return p; } /** * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest. * @addr: Address to start writing code. * * Assemble the code to handle return from the guest exit handler * (kvm_mips_handle_exit()) back to the guest. * * Returns: Next address after end of written function. */ static void *kvm_mips_build_ret_to_guest(void *addr) { u32 *p = addr; /* Put the saved pointer to vcpu (s0) back into the scratch register */ UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]); /* Load up the Guest EBASE to minimize the window where BEV is set */ UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1); /* Switch EBASE back to the one used by KVM */ uasm_i_mfc0(&p, V1, C0_STATUS); uasm_i_lui(&p, AT, ST0_BEV >> 16); uasm_i_or(&p, K0, V1, AT); uasm_i_mtc0(&p, K0, C0_STATUS); uasm_i_ehb(&p); build_set_exc_base(&p, T0); /* Setup status register for running guest in UM */ uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE); UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX)); uasm_i_and(&p, V1, V1, AT); uasm_i_mtc0(&p, V1, C0_STATUS); uasm_i_ehb(&p); p = kvm_mips_build_enter_guest(p); return p; } /** * kvm_mips_build_ret_to_host() - Assemble code to return to the host. * @addr: Address to start writing code. * * Assemble the code to handle return from the guest exit handler * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run * function generated by kvm_mips_build_vcpu_run(). * * Returns: Next address after end of written function. */ static void *kvm_mips_build_ret_to_host(void *addr) { u32 *p = addr; unsigned int i; /* EBASE is already pointing to Linux */ UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1); UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs)); /* * r2/v0 is the return code, shift it down by 2 (arithmetic) * to recover the err code */ uasm_i_sra(&p, K0, V0, 2); uasm_i_move(&p, V0, K0); /* Load context saved on the host stack */ for (i = 16; i < 31; ++i) { if (i == 24) i = 28; UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1); } /* Restore RDHWR access */ UASM_i_LA_mostly(&p, K0, (long)&hwrena); uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0); uasm_i_mtc0(&p, K0, C0_HWRENA); /* Restore RA, which is the address we will return to */ UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1); uasm_i_jr(&p, RA); uasm_i_nop(&p); return p; }