// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2014 STMicroelectronics R&D Ltd */ /* * Authors: * Stephen Gallimore <stephen.gallimore@st.com>, * Pankaj Dev <pankaj.dev@st.com>. */ #include <linux/slab.h> #include <linux/of_address.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include "clkgen.h" /* * Maximum input clock to the PLL before we divide it down by 2 * although in reality in actual systems this has never been seen to * be used. */ #define QUADFS_NDIV_THRESHOLD 30000000 #define PLL_BW_GOODREF (0L) #define PLL_BW_VBADREF (1L) #define PLL_BW_BADREF (2L) #define PLL_BW_VGOODREF (3L) #define QUADFS_MAX_CHAN 4 struct stm_fs { unsigned long ndiv; unsigned long mdiv; unsigned long pe; unsigned long sdiv; unsigned long nsdiv; }; struct clkgen_quadfs_data { bool reset_present; bool bwfilter_present; bool lockstatus_present; bool powerup_polarity; bool standby_polarity; bool nsdiv_present; bool nrst_present; struct clkgen_field ndiv; struct clkgen_field ref_bw; struct clkgen_field nreset; struct clkgen_field npda; struct clkgen_field lock_status; struct clkgen_field nrst[QUADFS_MAX_CHAN]; struct clkgen_field nsb[QUADFS_MAX_CHAN]; struct clkgen_field en[QUADFS_MAX_CHAN]; struct clkgen_field mdiv[QUADFS_MAX_CHAN]; struct clkgen_field pe[QUADFS_MAX_CHAN]; struct clkgen_field sdiv[QUADFS_MAX_CHAN]; struct clkgen_field nsdiv[QUADFS_MAX_CHAN]; const struct clk_ops *pll_ops; int (*get_params)(unsigned long, unsigned long, struct stm_fs *); int (*get_rate)(unsigned long , const struct stm_fs *, unsigned long *); }; struct clkgen_clk_out { const char *name; unsigned long flags; }; struct clkgen_quadfs_data_clks { struct clkgen_quadfs_data *data; const struct clkgen_clk_out *outputs; }; static const struct clk_ops st_quadfs_pll_c32_ops; static int clk_fs660c32_dig_get_params(unsigned long input, unsigned long output, struct stm_fs *fs); static int clk_fs660c32_dig_get_rate(unsigned long, const struct stm_fs *, unsigned long *); static const struct clkgen_quadfs_data st_fs660c32_C = { .nrst_present = true, .nrst = { CLKGEN_FIELD(0x2f0, 0x1, 0), CLKGEN_FIELD(0x2f0, 0x1, 1), CLKGEN_FIELD(0x2f0, 0x1, 2), CLKGEN_FIELD(0x2f0, 0x1, 3) }, .npda = CLKGEN_FIELD(0x2f0, 0x1, 12), .nsb = { CLKGEN_FIELD(0x2f0, 0x1, 8), CLKGEN_FIELD(0x2f0, 0x1, 9), CLKGEN_FIELD(0x2f0, 0x1, 10), CLKGEN_FIELD(0x2f0, 0x1, 11) }, .nsdiv_present = true, .nsdiv = { CLKGEN_FIELD(0x304, 0x1, 24), CLKGEN_FIELD(0x308, 0x1, 24), CLKGEN_FIELD(0x30c, 0x1, 24), CLKGEN_FIELD(0x310, 0x1, 24) }, .mdiv = { CLKGEN_FIELD(0x304, 0x1f, 15), CLKGEN_FIELD(0x308, 0x1f, 15), CLKGEN_FIELD(0x30c, 0x1f, 15), CLKGEN_FIELD(0x310, 0x1f, 15) }, .en = { CLKGEN_FIELD(0x2fc, 0x1, 0), CLKGEN_FIELD(0x2fc, 0x1, 1), CLKGEN_FIELD(0x2fc, 0x1, 2), CLKGEN_FIELD(0x2fc, 0x1, 3) }, .ndiv = CLKGEN_FIELD(0x2f4, 0x7, 16), .pe = { CLKGEN_FIELD(0x304, 0x7fff, 0), CLKGEN_FIELD(0x308, 0x7fff, 0), CLKGEN_FIELD(0x30c, 0x7fff, 0), CLKGEN_FIELD(0x310, 0x7fff, 0) }, .sdiv = { CLKGEN_FIELD(0x304, 0xf, 20), CLKGEN_FIELD(0x308, 0xf, 20), CLKGEN_FIELD(0x30c, 0xf, 20), CLKGEN_FIELD(0x310, 0xf, 20) }, .lockstatus_present = true, .lock_status = CLKGEN_FIELD(0x2f0, 0x1, 24), .powerup_polarity = 1, .standby_polarity = 1, .pll_ops = &st_quadfs_pll_c32_ops, .get_params = clk_fs660c32_dig_get_params, .get_rate = clk_fs660c32_dig_get_rate, }; static const struct clkgen_clk_out st_fs660c32_C_clks[] = { { .name = "clk-s-c0-fs0-ch0", }, { .name = "clk-s-c0-fs0-ch1", }, { .name = "clk-s-c0-fs0-ch2", }, { .name = "clk-s-c0-fs0-ch3", }, }; static const struct clkgen_quadfs_data_clks st_fs660c32_C_data = { .data = (struct clkgen_quadfs_data *)&st_fs660c32_C, .outputs = st_fs660c32_C_clks, }; static const struct clkgen_quadfs_data st_fs660c32_D = { .nrst_present = true, .nrst = { CLKGEN_FIELD(0x2a0, 0x1, 0), CLKGEN_FIELD(0x2a0, 0x1, 1), CLKGEN_FIELD(0x2a0, 0x1, 2), CLKGEN_FIELD(0x2a0, 0x1, 3) }, .ndiv = CLKGEN_FIELD(0x2a4, 0x7, 16), .pe = { CLKGEN_FIELD(0x2b4, 0x7fff, 0), CLKGEN_FIELD(0x2b8, 0x7fff, 0), CLKGEN_FIELD(0x2bc, 0x7fff, 0), CLKGEN_FIELD(0x2c0, 0x7fff, 0) }, .sdiv = { CLKGEN_FIELD(0x2b4, 0xf, 20), CLKGEN_FIELD(0x2b8, 0xf, 20), CLKGEN_FIELD(0x2bc, 0xf, 20), CLKGEN_FIELD(0x2c0, 0xf, 20) }, .npda = CLKGEN_FIELD(0x2a0, 0x1, 12), .nsb = { CLKGEN_FIELD(0x2a0, 0x1, 8), CLKGEN_FIELD(0x2a0, 0x1, 9), CLKGEN_FIELD(0x2a0, 0x1, 10), CLKGEN_FIELD(0x2a0, 0x1, 11) }, .nsdiv_present = true, .nsdiv = { CLKGEN_FIELD(0x2b4, 0x1, 24), CLKGEN_FIELD(0x2b8, 0x1, 24), CLKGEN_FIELD(0x2bc, 0x1, 24), CLKGEN_FIELD(0x2c0, 0x1, 24) }, .mdiv = { CLKGEN_FIELD(0x2b4, 0x1f, 15), CLKGEN_FIELD(0x2b8, 0x1f, 15), CLKGEN_FIELD(0x2bc, 0x1f, 15), CLKGEN_FIELD(0x2c0, 0x1f, 15) }, .en = { CLKGEN_FIELD(0x2ac, 0x1, 0), CLKGEN_FIELD(0x2ac, 0x1, 1), CLKGEN_FIELD(0x2ac, 0x1, 2), CLKGEN_FIELD(0x2ac, 0x1, 3) }, .lockstatus_present = true, .lock_status = CLKGEN_FIELD(0x2A0, 0x1, 24), .powerup_polarity = 1, .standby_polarity = 1, .pll_ops = &st_quadfs_pll_c32_ops, .get_params = clk_fs660c32_dig_get_params, .get_rate = clk_fs660c32_dig_get_rate,}; static const struct clkgen_quadfs_data_clks st_fs660c32_D_data = { .data = (struct clkgen_quadfs_data *)&st_fs660c32_D, }; static const struct clkgen_clk_out st_fs660c32_D0_clks[] = { { .name = "clk-s-d0-fs0-ch0", }, { .name = "clk-s-d0-fs0-ch1", }, { .name = "clk-s-d0-fs0-ch2", }, { .name = "clk-s-d0-fs0-ch3", }, }; static const struct clkgen_quadfs_data_clks st_fs660c32_D0_data = { .data = (struct clkgen_quadfs_data *)&st_fs660c32_D, .outputs = st_fs660c32_D0_clks, }; static const struct clkgen_clk_out st_fs660c32_D2_clks[] = { { .name = "clk-s-d2-fs0-ch0", }, { .name = "clk-s-d2-fs0-ch1", }, { .name = "clk-s-d2-fs0-ch2", }, { .name = "clk-s-d2-fs0-ch3", }, }; static const struct clkgen_quadfs_data_clks st_fs660c32_D2_data = { .data = (struct clkgen_quadfs_data *)&st_fs660c32_D, .outputs = st_fs660c32_D2_clks, }; static const struct clkgen_clk_out st_fs660c32_D3_clks[] = { { .name = "clk-s-d3-fs0-ch0", }, { .name = "clk-s-d3-fs0-ch1", }, { .name = "clk-s-d3-fs0-ch2", }, { .name = "clk-s-d3-fs0-ch3", }, }; static const struct clkgen_quadfs_data_clks st_fs660c32_D3_data = { .data = (struct clkgen_quadfs_data *)&st_fs660c32_D, .outputs = st_fs660c32_D3_clks, }; /** * DOC: A Frequency Synthesizer that multiples its input clock by a fixed factor * * Traits of this clock: * prepare - clk_(un)prepare only ensures parent is (un)prepared * enable - clk_enable and clk_disable are functional & control the Fsyn * rate - inherits rate from parent. set_rate/round_rate/recalc_rate * parent - fixed parent. No clk_set_parent support */ /** * struct st_clk_quadfs_pll - A pll which outputs a fixed multiplier of * its parent clock, found inside a type of * ST quad channel frequency synthesizer block * * @hw: handle between common and hardware-specific interfaces. * @regs_base: base address of the configuration registers. * @lock: spinlock. * @data: local driver data * @ndiv: regmap field for the ndiv control. */ struct st_clk_quadfs_pll { struct clk_hw hw; void __iomem *regs_base; spinlock_t *lock; struct clkgen_quadfs_data *data; u32 ndiv; }; #define to_quadfs_pll(_hw) container_of(_hw, struct st_clk_quadfs_pll, hw) static int quadfs_pll_enable(struct clk_hw *hw) { struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw); unsigned long flags = 0, timeout = jiffies + msecs_to_jiffies(10); if (pll->lock) spin_lock_irqsave(pll->lock, flags); /* * Bring block out of reset if we have reset control. */ if (pll->data->reset_present) CLKGEN_WRITE(pll, nreset, 1); /* * Use a fixed input clock noise bandwidth filter for the moment */ if (pll->data->bwfilter_present) CLKGEN_WRITE(pll, ref_bw, PLL_BW_GOODREF); CLKGEN_WRITE(pll, ndiv, pll->ndiv); /* * Power up the PLL */ CLKGEN_WRITE(pll, npda, !pll->data->powerup_polarity); if (pll->lock) spin_unlock_irqrestore(pll->lock, flags); if (pll->data->lockstatus_present) while (!CLKGEN_READ(pll, lock_status)) { if (time_after(jiffies, timeout)) return -ETIMEDOUT; cpu_relax(); } return 0; } static void quadfs_pll_disable(struct clk_hw *hw) { struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw); unsigned long flags = 0; if (pll->lock) spin_lock_irqsave(pll->lock, flags); /* * Powerdown the PLL and then put block into soft reset if we have * reset control. */ CLKGEN_WRITE(pll, npda, pll->data->powerup_polarity); if (pll->data->reset_present) CLKGEN_WRITE(pll, nreset, 0); if (pll->lock) spin_unlock_irqrestore(pll->lock, flags); } static int quadfs_pll_is_enabled(struct clk_hw *hw) { struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw); u32 npda = CLKGEN_READ(pll, npda); return pll->data->powerup_polarity ? !npda : !!npda; } static int clk_fs660c32_vco_get_rate(unsigned long input, struct stm_fs *fs, unsigned long *rate) { unsigned long nd = fs->ndiv + 16; /* ndiv value */ *rate = input * nd; return 0; } static unsigned long quadfs_pll_fs660c32_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw); unsigned long rate = 0; struct stm_fs params; params.ndiv = CLKGEN_READ(pll, ndiv); if (clk_fs660c32_vco_get_rate(parent_rate, ¶ms, &rate)) pr_err("%s:%s error calculating rate\n", clk_hw_get_name(hw), __func__); pll->ndiv = params.ndiv; return rate; } static int clk_fs660c32_vco_get_params(unsigned long input, unsigned long output, struct stm_fs *fs) { /* Formula VCO frequency = (fin x ndiv) / pdiv ndiv = VCOfreq * pdiv / fin */ unsigned long pdiv = 1, n; /* Output clock range: 384Mhz to 660Mhz */ if (output < 384000000 || output > 660000000) return -EINVAL; if (input > 40000000) /* This means that PDIV would be 2 instead of 1. Not supported today. */ return -EINVAL; input /= 1000; output /= 1000; n = output * pdiv / input; if (n < 16) n = 16; fs->ndiv = n - 16; /* Converting formula value to reg value */ return 0; } static long quadfs_pll_fs660c32_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct stm_fs params; if (clk_fs660c32_vco_get_params(*prate, rate, ¶ms)) return rate; clk_fs660c32_vco_get_rate(*prate, ¶ms, &rate); pr_debug("%s: %s new rate %ld [ndiv=%u]\n", __func__, clk_hw_get_name(hw), rate, (unsigned int)params.ndiv); return rate; } static int quadfs_pll_fs660c32_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw); struct stm_fs params; long hwrate = 0; unsigned long flags = 0; int ret; if (!rate || !parent_rate) return -EINVAL; ret = clk_fs660c32_vco_get_params(parent_rate, rate, ¶ms); if (ret) return ret; clk_fs660c32_vco_get_rate(parent_rate, ¶ms, &hwrate); pr_debug("%s: %s new rate %ld [ndiv=0x%x]\n", __func__, clk_hw_get_name(hw), hwrate, (unsigned int)params.ndiv); if (!hwrate) return -EINVAL; pll->ndiv = params.ndiv; if (pll->lock) spin_lock_irqsave(pll->lock, flags); CLKGEN_WRITE(pll, ndiv, pll->ndiv); if (pll->lock) spin_unlock_irqrestore(pll->lock, flags); return 0; } static const struct clk_ops st_quadfs_pll_c32_ops = { .enable = quadfs_pll_enable, .disable = quadfs_pll_disable, .is_enabled = quadfs_pll_is_enabled, .recalc_rate = quadfs_pll_fs660c32_recalc_rate, .round_rate = quadfs_pll_fs660c32_round_rate, .set_rate = quadfs_pll_fs660c32_set_rate, }; static struct clk * __init st_clk_register_quadfs_pll( const char *name, const char *parent_name, struct clkgen_quadfs_data *quadfs, void __iomem *reg, spinlock_t *lock) { struct st_clk_quadfs_pll *pll; struct clk *clk; struct clk_init_data init; /* * Sanity check required pointers. */ if (WARN_ON(!name || !parent_name)) return ERR_PTR(-EINVAL); pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); init.name = name; init.ops = quadfs->pll_ops; init.flags = CLK_GET_RATE_NOCACHE; init.parent_names = &parent_name; init.num_parents = 1; pll->data = quadfs; pll->regs_base = reg; pll->lock = lock; pll->hw.init = &init; clk = clk_register(NULL, &pll->hw); if (IS_ERR(clk)) kfree(pll); return clk; } /** * DOC: A digital frequency synthesizer * * Traits of this clock: * prepare - clk_(un)prepare only ensures parent is (un)prepared * enable - clk_enable and clk_disable are functional * rate - set rate is functional * parent - fixed parent. No clk_set_parent support */ /* * struct st_clk_quadfs_fsynth - One clock output from a four channel digital * frequency synthesizer (fsynth) block. * * @hw: handle between common and hardware-specific interfaces * * @nsb: regmap field in the output control register for the digital * standby of this fsynth channel. This control is active low so * the channel is in standby when the control bit is cleared. * * @nsdiv: regmap field in the output control register for * for the optional divide by 3 of this fsynth channel. This control * is active low so the divide by 3 is active when the control bit is * cleared and the divide is bypassed when the bit is set. */ struct st_clk_quadfs_fsynth { struct clk_hw hw; void __iomem *regs_base; spinlock_t *lock; struct clkgen_quadfs_data *data; u32 chan; /* * Cached hardware values from set_rate so we can program the * hardware in enable. There are two reasons for this: * * 1. The registers may not be writable until the parent has been * enabled. * * 2. It restores the clock rate when a driver does an enable * on PM restore, after a suspend to RAM has lost the hardware * setup. */ u32 md; u32 pe; u32 sdiv; u32 nsdiv; }; #define to_quadfs_fsynth(_hw) \ container_of(_hw, struct st_clk_quadfs_fsynth, hw) static void quadfs_fsynth_program_enable(struct st_clk_quadfs_fsynth *fs) { /* * Pulse the program enable register lsb to make the hardware take * notice of the new md/pe values with a glitchless transition. */ CLKGEN_WRITE(fs, en[fs->chan], 1); CLKGEN_WRITE(fs, en[fs->chan], 0); } static void quadfs_fsynth_program_rate(struct st_clk_quadfs_fsynth *fs) { unsigned long flags = 0; /* * Ensure the md/pe parameters are ignored while we are * reprogramming them so we can get a glitchless change * when fine tuning the speed of a running clock. */ CLKGEN_WRITE(fs, en[fs->chan], 0); CLKGEN_WRITE(fs, mdiv[fs->chan], fs->md); CLKGEN_WRITE(fs, pe[fs->chan], fs->pe); CLKGEN_WRITE(fs, sdiv[fs->chan], fs->sdiv); if (fs->lock) spin_lock_irqsave(fs->lock, flags); if (fs->data->nsdiv_present) CLKGEN_WRITE(fs, nsdiv[fs->chan], fs->nsdiv); if (fs->lock) spin_unlock_irqrestore(fs->lock, flags); } static int quadfs_fsynth_enable(struct clk_hw *hw) { struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw); unsigned long flags = 0; pr_debug("%s: %s\n", __func__, clk_hw_get_name(hw)); quadfs_fsynth_program_rate(fs); if (fs->lock) spin_lock_irqsave(fs->lock, flags); CLKGEN_WRITE(fs, nsb[fs->chan], !fs->data->standby_polarity); if (fs->data->nrst_present) CLKGEN_WRITE(fs, nrst[fs->chan], 0); if (fs->lock) spin_unlock_irqrestore(fs->lock, flags); quadfs_fsynth_program_enable(fs); return 0; } static void quadfs_fsynth_disable(struct clk_hw *hw) { struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw); unsigned long flags = 0; pr_debug("%s: %s\n", __func__, clk_hw_get_name(hw)); if (fs->lock) spin_lock_irqsave(fs->lock, flags); CLKGEN_WRITE(fs, nsb[fs->chan], fs->data->standby_polarity); if (fs->lock) spin_unlock_irqrestore(fs->lock, flags); } static int quadfs_fsynth_is_enabled(struct clk_hw *hw) { struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw); u32 nsb = CLKGEN_READ(fs, nsb[fs->chan]); pr_debug("%s: %s enable bit = 0x%x\n", __func__, clk_hw_get_name(hw), nsb); return fs->data->standby_polarity ? !nsb : !!nsb; } #define P20 (uint64_t)(1 << 20) static int clk_fs660c32_dig_get_rate(unsigned long input, const struct stm_fs *fs, unsigned long *rate) { unsigned long s = (1 << fs->sdiv); unsigned long ns; uint64_t res; /* * 'nsdiv' is a register value ('BIN') which is translated * to a decimal value according to following rules. * * nsdiv ns.dec * 0 3 * 1 1 */ ns = (fs->nsdiv == 1) ? 1 : 3; res = (P20 * (32 + fs->mdiv) + 32 * fs->pe) * s * ns; *rate = (unsigned long)div64_u64(input * P20 * 32, res); return 0; } static int clk_fs660c32_get_pe(int m, int si, unsigned long *deviation, signed long input, unsigned long output, uint64_t *p, struct stm_fs *fs) { unsigned long new_freq, new_deviation; struct stm_fs fs_tmp; uint64_t val; val = (uint64_t)output << si; *p = (uint64_t)input * P20 - (32LL + (uint64_t)m) * val * (P20 / 32LL); *p = div64_u64(*p, val); if (*p > 32767LL) return 1; fs_tmp.mdiv = (unsigned long) m; fs_tmp.pe = (unsigned long)*p; fs_tmp.sdiv = si; fs_tmp.nsdiv = 1; clk_fs660c32_dig_get_rate(input, &fs_tmp, &new_freq); new_deviation = abs(output - new_freq); if (new_deviation < *deviation) { fs->mdiv = m; fs->pe = (unsigned long)*p; fs->sdiv = si; fs->nsdiv = 1; *deviation = new_deviation; } return 0; } static int clk_fs660c32_dig_get_params(unsigned long input, unsigned long output, struct stm_fs *fs) { int si; /* sdiv_reg (8 downto 0) */ int m; /* md value */ unsigned long new_freq, new_deviation; /* initial condition to say: "infinite deviation" */ unsigned long deviation = ~0; uint64_t p, p1, p2; /* pe value */ int r1, r2; struct stm_fs fs_tmp; for (si = 0; (si <= 8) && deviation; si++) { /* Boundary test to avoid useless iteration */ r1 = clk_fs660c32_get_pe(0, si, &deviation, input, output, &p1, fs); r2 = clk_fs660c32_get_pe(31, si, &deviation, input, output, &p2, fs); /* No solution */ if (r1 && r2 && (p1 > p2)) continue; /* Try to find best deviation */ for (m = 1; (m < 31) && deviation; m++) clk_fs660c32_get_pe(m, si, &deviation, input, output, &p, fs); } if (deviation == ~0) /* No solution found */ return -1; /* pe fine tuning if deviation not 0: +/- 2 around computed pe value */ if (deviation) { fs_tmp.mdiv = fs->mdiv; fs_tmp.sdiv = fs->sdiv; fs_tmp.nsdiv = fs->nsdiv; if (fs->pe > 2) p2 = fs->pe - 2; else p2 = 0; for (; p2 < 32768ll && (p2 <= (fs->pe + 2)); p2++) { fs_tmp.pe = (unsigned long)p2; clk_fs660c32_dig_get_rate(input, &fs_tmp, &new_freq); new_deviation = abs(output - new_freq); /* Check if this is a better solution */ if (new_deviation < deviation) { fs->pe = (unsigned long)p2; deviation = new_deviation; } } } return 0; } static int quadfs_fsynt_get_hw_value_for_recalc(struct st_clk_quadfs_fsynth *fs, struct stm_fs *params) { /* * Get the initial hardware values for recalc_rate */ params->mdiv = CLKGEN_READ(fs, mdiv[fs->chan]); params->pe = CLKGEN_READ(fs, pe[fs->chan]); params->sdiv = CLKGEN_READ(fs, sdiv[fs->chan]); if (fs->data->nsdiv_present) params->nsdiv = CLKGEN_READ(fs, nsdiv[fs->chan]); else params->nsdiv = 1; /* * If All are NULL then assume no clock rate is programmed. */ if (!params->mdiv && !params->pe && !params->sdiv) return 1; fs->md = params->mdiv; fs->pe = params->pe; fs->sdiv = params->sdiv; fs->nsdiv = params->nsdiv; return 0; } static long quadfs_find_best_rate(struct clk_hw *hw, unsigned long drate, unsigned long prate, struct stm_fs *params) { struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw); int (*clk_fs_get_rate)(unsigned long , const struct stm_fs *, unsigned long *); int (*clk_fs_get_params)(unsigned long, unsigned long, struct stm_fs *); unsigned long rate = 0; clk_fs_get_rate = fs->data->get_rate; clk_fs_get_params = fs->data->get_params; if (!clk_fs_get_params(prate, drate, params)) clk_fs_get_rate(prate, params, &rate); return rate; } static unsigned long quadfs_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw); unsigned long rate = 0; struct stm_fs params; int (*clk_fs_get_rate)(unsigned long , const struct stm_fs *, unsigned long *); clk_fs_get_rate = fs->data->get_rate; if (quadfs_fsynt_get_hw_value_for_recalc(fs, ¶ms)) return 0; if (clk_fs_get_rate(parent_rate, ¶ms, &rate)) { pr_err("%s:%s error calculating rate\n", clk_hw_get_name(hw), __func__); } pr_debug("%s:%s rate %lu\n", clk_hw_get_name(hw), __func__, rate); return rate; } static long quadfs_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct stm_fs params; rate = quadfs_find_best_rate(hw, rate, *prate, ¶ms); pr_debug("%s: %s new rate %ld [sdiv=0x%x,md=0x%x,pe=0x%x,nsdiv3=%u]\n", __func__, clk_hw_get_name(hw), rate, (unsigned int)params.sdiv, (unsigned int)params.mdiv, (unsigned int)params.pe, (unsigned int)params.nsdiv); return rate; } static void quadfs_program_and_enable(struct st_clk_quadfs_fsynth *fs, struct stm_fs *params) { fs->md = params->mdiv; fs->pe = params->pe; fs->sdiv = params->sdiv; fs->nsdiv = params->nsdiv; /* * In some integrations you can only change the fsynth programming when * the parent entity containing it is enabled. */ quadfs_fsynth_program_rate(fs); quadfs_fsynth_program_enable(fs); } static int quadfs_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw); struct stm_fs params; long hwrate; if (!rate || !parent_rate) return -EINVAL; memset(¶ms, 0, sizeof(struct stm_fs)); hwrate = quadfs_find_best_rate(hw, rate, parent_rate, ¶ms); if (!hwrate) return -EINVAL; quadfs_program_and_enable(fs, ¶ms); return 0; } static const struct clk_ops st_quadfs_ops = { .enable = quadfs_fsynth_enable, .disable = quadfs_fsynth_disable, .is_enabled = quadfs_fsynth_is_enabled, .round_rate = quadfs_round_rate, .set_rate = quadfs_set_rate, .recalc_rate = quadfs_recalc_rate, }; static struct clk * __init st_clk_register_quadfs_fsynth( const char *name, const char *parent_name, struct clkgen_quadfs_data *quadfs, void __iomem *reg, u32 chan, unsigned long flags, spinlock_t *lock) { struct st_clk_quadfs_fsynth *fs; struct clk *clk; struct clk_init_data init; /* * Sanity check required pointers, note that nsdiv3 is optional. */ if (WARN_ON(!name || !parent_name)) return ERR_PTR(-EINVAL); fs = kzalloc(sizeof(*fs), GFP_KERNEL); if (!fs) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &st_quadfs_ops; init.flags = flags | CLK_GET_RATE_NOCACHE; init.parent_names = &parent_name; init.num_parents = 1; fs->data = quadfs; fs->regs_base = reg; fs->chan = chan; fs->lock = lock; fs->hw.init = &init; clk = clk_register(NULL, &fs->hw); if (IS_ERR(clk)) kfree(fs); return clk; } static void __init st_of_create_quadfs_fsynths( struct device_node *np, const char *pll_name, struct clkgen_quadfs_data_clks *quadfs, void __iomem *reg, spinlock_t *lock) { struct clk_onecell_data *clk_data; int fschan; clk_data = kzalloc(sizeof(*clk_data), GFP_KERNEL); if (!clk_data) return; clk_data->clk_num = QUADFS_MAX_CHAN; clk_data->clks = kcalloc(QUADFS_MAX_CHAN, sizeof(struct clk *), GFP_KERNEL); if (!clk_data->clks) { kfree(clk_data); return; } for (fschan = 0; fschan < QUADFS_MAX_CHAN; fschan++) { struct clk *clk; const char *clk_name; unsigned long flags = 0; if (quadfs->outputs) { clk_name = quadfs->outputs[fschan].name; flags = quadfs->outputs[fschan].flags; } else { if (of_property_read_string_index(np, "clock-output-names", fschan, &clk_name)) break; of_clk_detect_critical(np, fschan, &flags); } /* * If we read an empty clock name then the channel is unused */ if (*clk_name == '\0') continue; clk = st_clk_register_quadfs_fsynth(clk_name, pll_name, quadfs->data, reg, fschan, flags, lock); /* * If there was an error registering this clock output, clean * up and move on to the next one. */ if (!IS_ERR(clk)) { clk_data->clks[fschan] = clk; pr_debug("%s: parent %s rate %u\n", __clk_get_name(clk), __clk_get_name(clk_get_parent(clk)), (unsigned int)clk_get_rate(clk)); } } of_clk_add_provider(np, of_clk_src_onecell_get, clk_data); } static void __init st_of_quadfs_setup(struct device_node *np, struct clkgen_quadfs_data_clks *datac) { struct clk *clk; const char *pll_name, *clk_parent_name; void __iomem *reg; spinlock_t *lock; struct device_node *parent_np; /* * First check for reg property within the node to keep backward * compatibility, then if reg doesn't exist look at the parent node */ reg = of_iomap(np, 0); if (!reg) { parent_np = of_get_parent(np); reg = of_iomap(parent_np, 0); of_node_put(parent_np); if (!reg) { pr_err("%s: Failed to get base address\n", __func__); return; } } clk_parent_name = of_clk_get_parent_name(np, 0); if (!clk_parent_name) return; pll_name = kasprintf(GFP_KERNEL, "%pOFn.pll", np); if (!pll_name) return; lock = kzalloc(sizeof(*lock), GFP_KERNEL); if (!lock) goto err_exit; spin_lock_init(lock); clk = st_clk_register_quadfs_pll(pll_name, clk_parent_name, datac->data, reg, lock); if (IS_ERR(clk)) { kfree(lock); goto err_exit; } else pr_debug("%s: parent %s rate %u\n", __clk_get_name(clk), __clk_get_name(clk_get_parent(clk)), (unsigned int)clk_get_rate(clk)); st_of_create_quadfs_fsynths(np, pll_name, datac, reg, lock); err_exit: kfree(pll_name); /* No longer need local copy of the PLL name */ } static void __init st_of_quadfs660C_setup(struct device_node *np) { st_of_quadfs_setup(np, (struct clkgen_quadfs_data_clks *) &st_fs660c32_C_data); } CLK_OF_DECLARE(quadfs660C, "st,quadfs-pll", st_of_quadfs660C_setup); static void __init st_of_quadfs660D_setup(struct device_node *np) { st_of_quadfs_setup(np, (struct clkgen_quadfs_data_clks *) &st_fs660c32_D_data); } CLK_OF_DECLARE(quadfs660D, "st,quadfs", st_of_quadfs660D_setup); static void __init st_of_quadfs660D0_setup(struct device_node *np) { st_of_quadfs_setup(np, (struct clkgen_quadfs_data_clks *) &st_fs660c32_D0_data); } CLK_OF_DECLARE(quadfs660D0, "st,quadfs-d0", st_of_quadfs660D0_setup); static void __init st_of_quadfs660D2_setup(struct device_node *np) { st_of_quadfs_setup(np, (struct clkgen_quadfs_data_clks *) &st_fs660c32_D2_data); } CLK_OF_DECLARE(quadfs660D2, "st,quadfs-d2", st_of_quadfs660D2_setup); static void __init st_of_quadfs660D3_setup(struct device_node *np) { st_of_quadfs_setup(np, (struct clkgen_quadfs_data_clks *) &st_fs660c32_D3_data); } CLK_OF_DECLARE(quadfs660D3, "st,quadfs-d3", st_of_quadfs660D3_setup);