/* * Switch a MMU context. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1996, 1997, 1998, 1999 by Ralf Baechle * Copyright (C) 1999 Silicon Graphics, Inc. */ #ifndef _ASM_MMU_CONTEXT_H #define _ASM_MMU_CONTEXT_H #include <linux/errno.h> #include <linux/sched.h> #include <linux/mm_types.h> #include <linux/smp.h> #include <linux/slab.h> #include <asm/barrier.h> #include <asm/cacheflush.h> #include <asm/dsemul.h> #include <asm/ginvt.h> #include <asm/hazards.h> #include <asm/tlbflush.h> #include <asm-generic/mm_hooks.h> #define htw_set_pwbase(pgd) \ do { \ if (cpu_has_htw) { \ write_c0_pwbase(pgd); \ back_to_back_c0_hazard(); \ } \ } while (0) extern void tlbmiss_handler_setup_pgd(unsigned long); extern char tlbmiss_handler_setup_pgd_end[]; /* Note: This is also implemented with uasm in arch/mips/kvm/entry.c */ #define TLBMISS_HANDLER_SETUP_PGD(pgd) \ do { \ tlbmiss_handler_setup_pgd((unsigned long)(pgd)); \ htw_set_pwbase((unsigned long)pgd); \ } while (0) #ifdef CONFIG_MIPS_PGD_C0_CONTEXT #define TLBMISS_HANDLER_RESTORE() \ write_c0_xcontext((unsigned long) smp_processor_id() << \ SMP_CPUID_REGSHIFT) #define TLBMISS_HANDLER_SETUP() \ do { \ TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir); \ TLBMISS_HANDLER_RESTORE(); \ } while (0) #else /* !CONFIG_MIPS_PGD_C0_CONTEXT: using pgd_current*/ /* * For the fast tlb miss handlers, we keep a per cpu array of pointers * to the current pgd for each processor. Also, the proc. id is stuffed * into the context register. */ extern unsigned long pgd_current[]; #define TLBMISS_HANDLER_RESTORE() \ write_c0_context((unsigned long) smp_processor_id() << \ SMP_CPUID_REGSHIFT) #define TLBMISS_HANDLER_SETUP() \ TLBMISS_HANDLER_RESTORE(); \ back_to_back_c0_hazard(); \ TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir) #endif /* CONFIG_MIPS_PGD_C0_CONTEXT*/ /* * The ginvt instruction will invalidate wired entries when its type field * targets anything other than the entire TLB. That means that if we were to * allow the kernel to create wired entries with the MMID of current->active_mm * then those wired entries could be invalidated when we later use ginvt to * invalidate TLB entries with that MMID. * * In order to prevent ginvt from trashing wired entries, we reserve one MMID * for use by the kernel when creating wired entries. This MMID will never be * assigned to a struct mm, and we'll never target it with a ginvt instruction. */ #define MMID_KERNEL_WIRED 0 /* * All unused by hardware upper bits will be considered * as a software asid extension. */ static inline u64 asid_version_mask(unsigned int cpu) { unsigned long asid_mask = cpu_asid_mask(&cpu_data[cpu]); return ~(u64)(asid_mask | (asid_mask - 1)); } static inline u64 asid_first_version(unsigned int cpu) { return ~asid_version_mask(cpu) + 1; } static inline u64 cpu_context(unsigned int cpu, const struct mm_struct *mm) { if (cpu_has_mmid) return atomic64_read(&mm->context.mmid); return mm->context.asid[cpu]; } static inline void set_cpu_context(unsigned int cpu, struct mm_struct *mm, u64 ctx) { if (cpu_has_mmid) atomic64_set(&mm->context.mmid, ctx); else mm->context.asid[cpu] = ctx; } #define asid_cache(cpu) (cpu_data[cpu].asid_cache) #define cpu_asid(cpu, mm) \ (cpu_context((cpu), (mm)) & cpu_asid_mask(&cpu_data[cpu])) extern void get_new_mmu_context(struct mm_struct *mm); extern void check_mmu_context(struct mm_struct *mm); extern void check_switch_mmu_context(struct mm_struct *mm); /* * Initialize the context related info for a new mm_struct * instance. */ #define init_new_context init_new_context static inline int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { int i; if (cpu_has_mmid) { set_cpu_context(0, mm, 0); } else { for_each_possible_cpu(i) set_cpu_context(i, mm, 0); } mm->context.bd_emupage_allocmap = NULL; spin_lock_init(&mm->context.bd_emupage_lock); init_waitqueue_head(&mm->context.bd_emupage_queue); return 0; } static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { unsigned int cpu = smp_processor_id(); unsigned long flags; local_irq_save(flags); htw_stop(); check_switch_mmu_context(next); /* * Mark current->active_mm as not "active" anymore. * We don't want to mislead possible IPI tlb flush routines. */ cpumask_clear_cpu(cpu, mm_cpumask(prev)); cpumask_set_cpu(cpu, mm_cpumask(next)); htw_start(); local_irq_restore(flags); } /* * Destroy context related info for an mm_struct that is about * to be put to rest. */ #define destroy_context destroy_context static inline void destroy_context(struct mm_struct *mm) { dsemul_mm_cleanup(mm); } static inline void drop_mmu_context(struct mm_struct *mm) { unsigned long flags; unsigned int cpu; u32 old_mmid; u64 ctx; local_irq_save(flags); cpu = smp_processor_id(); ctx = cpu_context(cpu, mm); if (!ctx) { /* no-op */ } else if (cpu_has_mmid) { /* * Globally invalidating TLB entries associated with the MMID * is pretty cheap using the GINVT instruction, so we'll do * that rather than incur the overhead of allocating a new * MMID. The latter would be especially difficult since MMIDs * are global & other CPUs may be actively using ctx. */ htw_stop(); old_mmid = read_c0_memorymapid(); write_c0_memorymapid(ctx & cpu_asid_mask(&cpu_data[cpu])); mtc0_tlbw_hazard(); ginvt_mmid(); sync_ginv(); write_c0_memorymapid(old_mmid); instruction_hazard(); htw_start(); } else if (cpumask_test_cpu(cpu, mm_cpumask(mm))) { /* * mm is currently active, so we can't really drop it. * Instead we bump the ASID. */ htw_stop(); get_new_mmu_context(mm); write_c0_entryhi(cpu_asid(cpu, mm)); htw_start(); } else { /* will get a new context next time */ set_cpu_context(cpu, mm, 0); } local_irq_restore(flags); } #include <asm-generic/mmu_context.h> #endif /* _ASM_MMU_CONTEXT_H */