// SPDX-License-Identifier: GPL-2.0 /* * iommu.c: IOMMU specific routines for memory management. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/dma-map-ops.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <asm/io.h> #include <asm/mxcc.h> #include <asm/mbus.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/bitext.h> #include <asm/iommu.h> #include <asm/dma.h> #include "mm_32.h" /* * This can be sized dynamically, but we will do this * only when we have a guidance about actual I/O pressures. */ #define IOMMU_RNGE IOMMU_RNGE_256MB #define IOMMU_START 0xF0000000 #define IOMMU_WINSIZE (256*1024*1024U) #define IOMMU_NPTES (IOMMU_WINSIZE/PAGE_SIZE) /* 64K PTEs, 256KB */ #define IOMMU_ORDER 6 /* 4096 * (1<<6) */ static int viking_flush; /* viking.S */ extern void viking_flush_page(unsigned long page); extern void viking_mxcc_flush_page(unsigned long page); /* * Values precomputed according to CPU type. */ static unsigned int ioperm_noc; /* Consistent mapping iopte flags */ static pgprot_t dvma_prot; /* Consistent mapping pte flags */ #define IOPERM (IOPTE_CACHE | IOPTE_WRITE | IOPTE_VALID) #define MKIOPTE(pfn, perm) (((((pfn)<<8) & IOPTE_PAGE) | (perm)) & ~IOPTE_WAZ) static const struct dma_map_ops sbus_iommu_dma_gflush_ops; static const struct dma_map_ops sbus_iommu_dma_pflush_ops; static void __init sbus_iommu_init(struct platform_device *op) { struct iommu_struct *iommu; unsigned int impl, vers; unsigned long *bitmap; unsigned long control; unsigned long base; unsigned long tmp; iommu = kmalloc(sizeof(struct iommu_struct), GFP_KERNEL); if (!iommu) { prom_printf("Unable to allocate iommu structure\n"); prom_halt(); } iommu->regs = of_ioremap(&op->resource[0], 0, PAGE_SIZE * 3, "iommu_regs"); if (!iommu->regs) { prom_printf("Cannot map IOMMU registers\n"); prom_halt(); } control = sbus_readl(&iommu->regs->control); impl = (control & IOMMU_CTRL_IMPL) >> 28; vers = (control & IOMMU_CTRL_VERS) >> 24; control &= ~(IOMMU_CTRL_RNGE); control |= (IOMMU_RNGE_256MB | IOMMU_CTRL_ENAB); sbus_writel(control, &iommu->regs->control); iommu_invalidate(iommu->regs); iommu->start = IOMMU_START; iommu->end = 0xffffffff; /* Allocate IOMMU page table */ /* Stupid alignment constraints give me a headache. We need 256K or 512K or 1M or 2M area aligned to its size and current gfp will fortunately give it to us. */ tmp = __get_free_pages(GFP_KERNEL, IOMMU_ORDER); if (!tmp) { prom_printf("Unable to allocate iommu table [0x%lx]\n", IOMMU_NPTES * sizeof(iopte_t)); prom_halt(); } iommu->page_table = (iopte_t *)tmp; /* Initialize new table. */ memset(iommu->page_table, 0, IOMMU_NPTES*sizeof(iopte_t)); flush_cache_all(); flush_tlb_all(); base = __pa((unsigned long)iommu->page_table) >> 4; sbus_writel(base, &iommu->regs->base); iommu_invalidate(iommu->regs); bitmap = kmalloc(IOMMU_NPTES>>3, GFP_KERNEL); if (!bitmap) { prom_printf("Unable to allocate iommu bitmap [%d]\n", (int)(IOMMU_NPTES>>3)); prom_halt(); } bit_map_init(&iommu->usemap, bitmap, IOMMU_NPTES); /* To be coherent on HyperSparc, the page color of DVMA * and physical addresses must match. */ if (srmmu_modtype == HyperSparc) iommu->usemap.num_colors = vac_cache_size >> PAGE_SHIFT; else iommu->usemap.num_colors = 1; printk(KERN_INFO "IOMMU: impl %d vers %d table 0x%p[%d B] map [%d b]\n", impl, vers, iommu->page_table, (int)(IOMMU_NPTES*sizeof(iopte_t)), (int)IOMMU_NPTES); op->dev.archdata.iommu = iommu; if (flush_page_for_dma_global) op->dev.dma_ops = &sbus_iommu_dma_gflush_ops; else op->dev.dma_ops = &sbus_iommu_dma_pflush_ops; } static int __init iommu_init(void) { struct device_node *dp; for_each_node_by_name(dp, "iommu") { struct platform_device *op = of_find_device_by_node(dp); sbus_iommu_init(op); of_propagate_archdata(op); } return 0; } subsys_initcall(iommu_init); /* Flush the iotlb entries to ram. */ /* This could be better if we didn't have to flush whole pages. */ static void iommu_flush_iotlb(iopte_t *iopte, unsigned int niopte) { unsigned long start; unsigned long end; start = (unsigned long)iopte; end = PAGE_ALIGN(start + niopte*sizeof(iopte_t)); start &= PAGE_MASK; if (viking_mxcc_present) { while(start < end) { viking_mxcc_flush_page(start); start += PAGE_SIZE; } } else if (viking_flush) { while(start < end) { viking_flush_page(start); start += PAGE_SIZE; } } else { while(start < end) { __flush_page_to_ram(start); start += PAGE_SIZE; } } } static dma_addr_t __sbus_iommu_map_page(struct device *dev, struct page *page, unsigned long offset, size_t len, bool per_page_flush) { struct iommu_struct *iommu = dev->archdata.iommu; phys_addr_t paddr = page_to_phys(page) + offset; unsigned long off = paddr & ~PAGE_MASK; unsigned long npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; unsigned long pfn = __phys_to_pfn(paddr); unsigned int busa, busa0; iopte_t *iopte, *iopte0; int ioptex, i; /* XXX So what is maxphys for us and how do drivers know it? */ if (!len || len > 256 * 1024) return DMA_MAPPING_ERROR; /* * We expect unmapped highmem pages to be not in the cache. * XXX Is this a good assumption? * XXX What if someone else unmaps it here and races us? */ if (per_page_flush && !PageHighMem(page)) { unsigned long vaddr, p; vaddr = (unsigned long)page_address(page) + offset; for (p = vaddr & PAGE_MASK; p < vaddr + len; p += PAGE_SIZE) flush_page_for_dma(p); } /* page color = pfn of page */ ioptex = bit_map_string_get(&iommu->usemap, npages, pfn); if (ioptex < 0) panic("iommu out"); busa0 = iommu->start + (ioptex << PAGE_SHIFT); iopte0 = &iommu->page_table[ioptex]; busa = busa0; iopte = iopte0; for (i = 0; i < npages; i++) { iopte_val(*iopte) = MKIOPTE(pfn, IOPERM); iommu_invalidate_page(iommu->regs, busa); busa += PAGE_SIZE; iopte++; pfn++; } iommu_flush_iotlb(iopte0, npages); return busa0 + off; } static dma_addr_t sbus_iommu_map_page_gflush(struct device *dev, struct page *page, unsigned long offset, size_t len, enum dma_data_direction dir, unsigned long attrs) { flush_page_for_dma(0); return __sbus_iommu_map_page(dev, page, offset, len, false); } static dma_addr_t sbus_iommu_map_page_pflush(struct device *dev, struct page *page, unsigned long offset, size_t len, enum dma_data_direction dir, unsigned long attrs) { return __sbus_iommu_map_page(dev, page, offset, len, true); } static int __sbus_iommu_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs, bool per_page_flush) { struct scatterlist *sg; int j; for_each_sg(sgl, sg, nents, j) { sg->dma_address =__sbus_iommu_map_page(dev, sg_page(sg), sg->offset, sg->length, per_page_flush); if (sg->dma_address == DMA_MAPPING_ERROR) return -EIO; sg->dma_length = sg->length; } return nents; } static int sbus_iommu_map_sg_gflush(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { flush_page_for_dma(0); return __sbus_iommu_map_sg(dev, sgl, nents, dir, attrs, false); } static int sbus_iommu_map_sg_pflush(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { return __sbus_iommu_map_sg(dev, sgl, nents, dir, attrs, true); } static void sbus_iommu_unmap_page(struct device *dev, dma_addr_t dma_addr, size_t len, enum dma_data_direction dir, unsigned long attrs) { struct iommu_struct *iommu = dev->archdata.iommu; unsigned int busa = dma_addr & PAGE_MASK; unsigned long off = dma_addr & ~PAGE_MASK; unsigned int npages = (off + len + PAGE_SIZE-1) >> PAGE_SHIFT; unsigned int ioptex = (busa - iommu->start) >> PAGE_SHIFT; unsigned int i; BUG_ON(busa < iommu->start); for (i = 0; i < npages; i++) { iopte_val(iommu->page_table[ioptex + i]) = 0; iommu_invalidate_page(iommu->regs, busa); busa += PAGE_SIZE; } bit_map_clear(&iommu->usemap, ioptex, npages); } static void sbus_iommu_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) { sbus_iommu_unmap_page(dev, sg->dma_address, sg->length, dir, attrs); sg->dma_address = 0x21212121; } } #ifdef CONFIG_SBUS static void *sbus_iommu_alloc(struct device *dev, size_t len, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { struct iommu_struct *iommu = dev->archdata.iommu; unsigned long va, addr, page, end, ret; iopte_t *iopte = iommu->page_table; iopte_t *first; int ioptex; /* XXX So what is maxphys for us and how do drivers know it? */ if (!len || len > 256 * 1024) return NULL; len = PAGE_ALIGN(len); va = __get_free_pages(gfp | __GFP_ZERO, get_order(len)); if (va == 0) return NULL; addr = ret = sparc_dma_alloc_resource(dev, len); if (!addr) goto out_free_pages; BUG_ON((va & ~PAGE_MASK) != 0); BUG_ON((addr & ~PAGE_MASK) != 0); BUG_ON((len & ~PAGE_MASK) != 0); /* page color = physical address */ ioptex = bit_map_string_get(&iommu->usemap, len >> PAGE_SHIFT, addr >> PAGE_SHIFT); if (ioptex < 0) panic("iommu out"); iopte += ioptex; first = iopte; end = addr + len; while(addr < end) { page = va; { pmd_t *pmdp; pte_t *ptep; if (viking_mxcc_present) viking_mxcc_flush_page(page); else if (viking_flush) viking_flush_page(page); else __flush_page_to_ram(page); pmdp = pmd_off_k(addr); ptep = pte_offset_kernel(pmdp, addr); set_pte(ptep, mk_pte(virt_to_page(page), dvma_prot)); } iopte_val(*iopte++) = MKIOPTE(page_to_pfn(virt_to_page(page)), ioperm_noc); addr += PAGE_SIZE; va += PAGE_SIZE; } /* P3: why do we need this? * * DAVEM: Because there are several aspects, none of which * are handled by a single interface. Some cpus are * completely not I/O DMA coherent, and some have * virtually indexed caches. The driver DMA flushing * methods handle the former case, but here during * IOMMU page table modifications, and usage of non-cacheable * cpu mappings of pages potentially in the cpu caches, we have * to handle the latter case as well. */ flush_cache_all(); iommu_flush_iotlb(first, len >> PAGE_SHIFT); flush_tlb_all(); iommu_invalidate(iommu->regs); *dma_handle = iommu->start + (ioptex << PAGE_SHIFT); return (void *)ret; out_free_pages: free_pages(va, get_order(len)); return NULL; } static void sbus_iommu_free(struct device *dev, size_t len, void *cpu_addr, dma_addr_t busa, unsigned long attrs) { struct iommu_struct *iommu = dev->archdata.iommu; iopte_t *iopte = iommu->page_table; struct page *page = virt_to_page(cpu_addr); int ioptex = (busa - iommu->start) >> PAGE_SHIFT; unsigned long end; if (!sparc_dma_free_resource(cpu_addr, len)) return; BUG_ON((busa & ~PAGE_MASK) != 0); BUG_ON((len & ~PAGE_MASK) != 0); iopte += ioptex; end = busa + len; while (busa < end) { iopte_val(*iopte++) = 0; busa += PAGE_SIZE; } flush_tlb_all(); iommu_invalidate(iommu->regs); bit_map_clear(&iommu->usemap, ioptex, len >> PAGE_SHIFT); __free_pages(page, get_order(len)); } #endif static const struct dma_map_ops sbus_iommu_dma_gflush_ops = { #ifdef CONFIG_SBUS .alloc = sbus_iommu_alloc, .free = sbus_iommu_free, #endif .map_page = sbus_iommu_map_page_gflush, .unmap_page = sbus_iommu_unmap_page, .map_sg = sbus_iommu_map_sg_gflush, .unmap_sg = sbus_iommu_unmap_sg, }; static const struct dma_map_ops sbus_iommu_dma_pflush_ops = { #ifdef CONFIG_SBUS .alloc = sbus_iommu_alloc, .free = sbus_iommu_free, #endif .map_page = sbus_iommu_map_page_pflush, .unmap_page = sbus_iommu_unmap_page, .map_sg = sbus_iommu_map_sg_pflush, .unmap_sg = sbus_iommu_unmap_sg, }; void __init ld_mmu_iommu(void) { if (viking_mxcc_present || srmmu_modtype == HyperSparc) { dvma_prot = __pgprot(SRMMU_CACHE | SRMMU_ET_PTE | SRMMU_PRIV); ioperm_noc = IOPTE_CACHE | IOPTE_WRITE | IOPTE_VALID; } else { dvma_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV); ioperm_noc = IOPTE_WRITE | IOPTE_VALID; } }