// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2004-2008 Freescale Semiconductor, Inc. * Copyright 2009 Semihalf. * * Approved as OSADL project by a majority of OSADL members and funded * by OSADL membership fees in 2009; for details see www.osadl.org. * * Based on original driver from Freescale Semiconductor * written by John Rigby <jrigby@freescale.com> on basis of mxc_nand.c. * Reworked and extended by Piotr Ziecik <kosmo@semihalf.com>. */ #include <linux/module.h> #include <linux/clk.h> #include <linux/gfp.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/partitions.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <asm/mpc5121.h> /* Addresses for NFC MAIN RAM BUFFER areas */ #define NFC_MAIN_AREA(n) ((n) * 0x200) /* Addresses for NFC SPARE BUFFER areas */ #define NFC_SPARE_BUFFERS 8 #define NFC_SPARE_LEN 0x40 #define NFC_SPARE_AREA(n) (0x1000 + ((n) * NFC_SPARE_LEN)) /* MPC5121 NFC registers */ #define NFC_BUF_ADDR 0x1E04 #define NFC_FLASH_ADDR 0x1E06 #define NFC_FLASH_CMD 0x1E08 #define NFC_CONFIG 0x1E0A #define NFC_ECC_STATUS1 0x1E0C #define NFC_ECC_STATUS2 0x1E0E #define NFC_SPAS 0x1E10 #define NFC_WRPROT 0x1E12 #define NFC_NF_WRPRST 0x1E18 #define NFC_CONFIG1 0x1E1A #define NFC_CONFIG2 0x1E1C #define NFC_UNLOCKSTART_BLK0 0x1E20 #define NFC_UNLOCKEND_BLK0 0x1E22 #define NFC_UNLOCKSTART_BLK1 0x1E24 #define NFC_UNLOCKEND_BLK1 0x1E26 #define NFC_UNLOCKSTART_BLK2 0x1E28 #define NFC_UNLOCKEND_BLK2 0x1E2A #define NFC_UNLOCKSTART_BLK3 0x1E2C #define NFC_UNLOCKEND_BLK3 0x1E2E /* Bit Definitions: NFC_BUF_ADDR */ #define NFC_RBA_MASK (7 << 0) #define NFC_ACTIVE_CS_SHIFT 5 #define NFC_ACTIVE_CS_MASK (3 << NFC_ACTIVE_CS_SHIFT) /* Bit Definitions: NFC_CONFIG */ #define NFC_BLS_UNLOCKED (1 << 1) /* Bit Definitions: NFC_CONFIG1 */ #define NFC_ECC_4BIT (1 << 0) #define NFC_FULL_PAGE_DMA (1 << 1) #define NFC_SPARE_ONLY (1 << 2) #define NFC_ECC_ENABLE (1 << 3) #define NFC_INT_MASK (1 << 4) #define NFC_BIG_ENDIAN (1 << 5) #define NFC_RESET (1 << 6) #define NFC_CE (1 << 7) #define NFC_ONE_CYCLE (1 << 8) #define NFC_PPB_32 (0 << 9) #define NFC_PPB_64 (1 << 9) #define NFC_PPB_128 (2 << 9) #define NFC_PPB_256 (3 << 9) #define NFC_PPB_MASK (3 << 9) #define NFC_FULL_PAGE_INT (1 << 11) /* Bit Definitions: NFC_CONFIG2 */ #define NFC_COMMAND (1 << 0) #define NFC_ADDRESS (1 << 1) #define NFC_INPUT (1 << 2) #define NFC_OUTPUT (1 << 3) #define NFC_ID (1 << 4) #define NFC_STATUS (1 << 5) #define NFC_CMD_FAIL (1 << 15) #define NFC_INT (1 << 15) /* Bit Definitions: NFC_WRPROT */ #define NFC_WPC_LOCK_TIGHT (1 << 0) #define NFC_WPC_LOCK (1 << 1) #define NFC_WPC_UNLOCK (1 << 2) #define DRV_NAME "mpc5121_nfc" /* Timeouts */ #define NFC_RESET_TIMEOUT 1000 /* 1 ms */ #define NFC_TIMEOUT (HZ / 10) /* 1/10 s */ struct mpc5121_nfc_prv { struct nand_controller controller; struct nand_chip chip; int irq; void __iomem *regs; struct clk *clk; wait_queue_head_t irq_waitq; uint column; int spareonly; void __iomem *csreg; struct device *dev; }; static void mpc5121_nfc_done(struct mtd_info *mtd); /* Read NFC register */ static inline u16 nfc_read(struct mtd_info *mtd, uint reg) { struct nand_chip *chip = mtd_to_nand(mtd); struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); return in_be16(prv->regs + reg); } /* Write NFC register */ static inline void nfc_write(struct mtd_info *mtd, uint reg, u16 val) { struct nand_chip *chip = mtd_to_nand(mtd); struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); out_be16(prv->regs + reg, val); } /* Set bits in NFC register */ static inline void nfc_set(struct mtd_info *mtd, uint reg, u16 bits) { nfc_write(mtd, reg, nfc_read(mtd, reg) | bits); } /* Clear bits in NFC register */ static inline void nfc_clear(struct mtd_info *mtd, uint reg, u16 bits) { nfc_write(mtd, reg, nfc_read(mtd, reg) & ~bits); } /* Invoke address cycle */ static inline void mpc5121_nfc_send_addr(struct mtd_info *mtd, u16 addr) { nfc_write(mtd, NFC_FLASH_ADDR, addr); nfc_write(mtd, NFC_CONFIG2, NFC_ADDRESS); mpc5121_nfc_done(mtd); } /* Invoke command cycle */ static inline void mpc5121_nfc_send_cmd(struct mtd_info *mtd, u16 cmd) { nfc_write(mtd, NFC_FLASH_CMD, cmd); nfc_write(mtd, NFC_CONFIG2, NFC_COMMAND); mpc5121_nfc_done(mtd); } /* Send data from NFC buffers to NAND flash */ static inline void mpc5121_nfc_send_prog_page(struct mtd_info *mtd) { nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); nfc_write(mtd, NFC_CONFIG2, NFC_INPUT); mpc5121_nfc_done(mtd); } /* Receive data from NAND flash */ static inline void mpc5121_nfc_send_read_page(struct mtd_info *mtd) { nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); nfc_write(mtd, NFC_CONFIG2, NFC_OUTPUT); mpc5121_nfc_done(mtd); } /* Receive ID from NAND flash */ static inline void mpc5121_nfc_send_read_id(struct mtd_info *mtd) { nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); nfc_write(mtd, NFC_CONFIG2, NFC_ID); mpc5121_nfc_done(mtd); } /* Receive status from NAND flash */ static inline void mpc5121_nfc_send_read_status(struct mtd_info *mtd) { nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); nfc_write(mtd, NFC_CONFIG2, NFC_STATUS); mpc5121_nfc_done(mtd); } /* NFC interrupt handler */ static irqreturn_t mpc5121_nfc_irq(int irq, void *data) { struct mtd_info *mtd = data; struct nand_chip *chip = mtd_to_nand(mtd); struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); nfc_set(mtd, NFC_CONFIG1, NFC_INT_MASK); wake_up(&prv->irq_waitq); return IRQ_HANDLED; } /* Wait for operation complete */ static void mpc5121_nfc_done(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); int rv; if ((nfc_read(mtd, NFC_CONFIG2) & NFC_INT) == 0) { nfc_clear(mtd, NFC_CONFIG1, NFC_INT_MASK); rv = wait_event_timeout(prv->irq_waitq, (nfc_read(mtd, NFC_CONFIG2) & NFC_INT), NFC_TIMEOUT); if (!rv) dev_warn(prv->dev, "Timeout while waiting for interrupt.\n"); } nfc_clear(mtd, NFC_CONFIG2, NFC_INT); } /* Do address cycle(s) */ static void mpc5121_nfc_addr_cycle(struct mtd_info *mtd, int column, int page) { struct nand_chip *chip = mtd_to_nand(mtd); u32 pagemask = chip->pagemask; if (column != -1) { mpc5121_nfc_send_addr(mtd, column); if (mtd->writesize > 512) mpc5121_nfc_send_addr(mtd, column >> 8); } if (page != -1) { do { mpc5121_nfc_send_addr(mtd, page & 0xFF); page >>= 8; pagemask >>= 8; } while (pagemask); } } /* Control chip select signals */ static void mpc5121_nfc_select_chip(struct nand_chip *nand, int chip) { struct mtd_info *mtd = nand_to_mtd(nand); if (chip < 0) { nfc_clear(mtd, NFC_CONFIG1, NFC_CE); return; } nfc_clear(mtd, NFC_BUF_ADDR, NFC_ACTIVE_CS_MASK); nfc_set(mtd, NFC_BUF_ADDR, (chip << NFC_ACTIVE_CS_SHIFT) & NFC_ACTIVE_CS_MASK); nfc_set(mtd, NFC_CONFIG1, NFC_CE); } /* Init external chip select logic on ADS5121 board */ static int ads5121_chipselect_init(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); struct device_node *dn; dn = of_find_compatible_node(NULL, NULL, "fsl,mpc5121ads-cpld"); if (dn) { prv->csreg = of_iomap(dn, 0); of_node_put(dn); if (!prv->csreg) return -ENOMEM; /* CPLD Register 9 controls NAND /CE Lines */ prv->csreg += 9; return 0; } return -EINVAL; } /* Control chips select signal on ADS5121 board */ static void ads5121_select_chip(struct nand_chip *nand, int chip) { struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand); u8 v; v = in_8(prv->csreg); v |= 0x0F; if (chip >= 0) { mpc5121_nfc_select_chip(nand, 0); v &= ~(1 << chip); } else mpc5121_nfc_select_chip(nand, -1); out_8(prv->csreg, v); } /* Read NAND Ready/Busy signal */ static int mpc5121_nfc_dev_ready(struct nand_chip *nand) { /* * NFC handles ready/busy signal internally. Therefore, this function * always returns status as ready. */ return 1; } /* Write command to NAND flash */ static void mpc5121_nfc_command(struct nand_chip *chip, unsigned command, int column, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); prv->column = (column >= 0) ? column : 0; prv->spareonly = 0; switch (command) { case NAND_CMD_PAGEPROG: mpc5121_nfc_send_prog_page(mtd); break; /* * NFC does not support sub-page reads and writes, * so emulate them using full page transfers. */ case NAND_CMD_READ0: column = 0; break; case NAND_CMD_READ1: prv->column += 256; command = NAND_CMD_READ0; column = 0; break; case NAND_CMD_READOOB: prv->spareonly = 1; command = NAND_CMD_READ0; column = 0; break; case NAND_CMD_SEQIN: mpc5121_nfc_command(chip, NAND_CMD_READ0, column, page); column = 0; break; case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: case NAND_CMD_READID: case NAND_CMD_STATUS: break; default: return; } mpc5121_nfc_send_cmd(mtd, command); mpc5121_nfc_addr_cycle(mtd, column, page); switch (command) { case NAND_CMD_READ0: if (mtd->writesize > 512) mpc5121_nfc_send_cmd(mtd, NAND_CMD_READSTART); mpc5121_nfc_send_read_page(mtd); break; case NAND_CMD_READID: mpc5121_nfc_send_read_id(mtd); break; case NAND_CMD_STATUS: mpc5121_nfc_send_read_status(mtd); if (chip->options & NAND_BUSWIDTH_16) prv->column = 1; else prv->column = 0; break; } } /* Copy data from/to NFC spare buffers. */ static void mpc5121_nfc_copy_spare(struct mtd_info *mtd, uint offset, u8 *buffer, uint size, int wr) { struct nand_chip *nand = mtd_to_nand(mtd); struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand); uint o, s, sbsize, blksize; /* * NAND spare area is available through NFC spare buffers. * The NFC divides spare area into (page_size / 512) chunks. * Each chunk is placed into separate spare memory area, using * first (spare_size / num_of_chunks) bytes of the buffer. * * For NAND device in which the spare area is not divided fully * by the number of chunks, number of used bytes in each spare * buffer is rounded down to the nearest even number of bytes, * and all remaining bytes are added to the last used spare area. * * For more information read section 26.6.10 of MPC5121e * Microcontroller Reference Manual, Rev. 3. */ /* Calculate number of valid bytes in each spare buffer */ sbsize = (mtd->oobsize / (mtd->writesize / 512)) & ~1; while (size) { /* Calculate spare buffer number */ s = offset / sbsize; if (s > NFC_SPARE_BUFFERS - 1) s = NFC_SPARE_BUFFERS - 1; /* * Calculate offset to requested data block in selected spare * buffer and its size. */ o = offset - (s * sbsize); blksize = min(sbsize - o, size); if (wr) memcpy_toio(prv->regs + NFC_SPARE_AREA(s) + o, buffer, blksize); else memcpy_fromio(buffer, prv->regs + NFC_SPARE_AREA(s) + o, blksize); buffer += blksize; offset += blksize; size -= blksize; } } /* Copy data from/to NFC main and spare buffers */ static void mpc5121_nfc_buf_copy(struct mtd_info *mtd, u_char *buf, int len, int wr) { struct nand_chip *chip = mtd_to_nand(mtd); struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); uint c = prv->column; uint l; /* Handle spare area access */ if (prv->spareonly || c >= mtd->writesize) { /* Calculate offset from beginning of spare area */ if (c >= mtd->writesize) c -= mtd->writesize; prv->column += len; mpc5121_nfc_copy_spare(mtd, c, buf, len, wr); return; } /* * Handle main area access - limit copy length to prevent * crossing main/spare boundary. */ l = min((uint)len, mtd->writesize - c); prv->column += l; if (wr) memcpy_toio(prv->regs + NFC_MAIN_AREA(0) + c, buf, l); else memcpy_fromio(buf, prv->regs + NFC_MAIN_AREA(0) + c, l); /* Handle crossing main/spare boundary */ if (l != len) { buf += l; len -= l; mpc5121_nfc_buf_copy(mtd, buf, len, wr); } } /* Read data from NFC buffers */ static void mpc5121_nfc_read_buf(struct nand_chip *chip, u_char *buf, int len) { mpc5121_nfc_buf_copy(nand_to_mtd(chip), buf, len, 0); } /* Write data to NFC buffers */ static void mpc5121_nfc_write_buf(struct nand_chip *chip, const u_char *buf, int len) { mpc5121_nfc_buf_copy(nand_to_mtd(chip), (u_char *)buf, len, 1); } /* Read byte from NFC buffers */ static u8 mpc5121_nfc_read_byte(struct nand_chip *chip) { u8 tmp; mpc5121_nfc_read_buf(chip, &tmp, sizeof(tmp)); return tmp; } /* * Read NFC configuration from Reset Config Word * * NFC is configured during reset in basis of information stored * in Reset Config Word. There is no other way to set NAND block * size, spare size and bus width. */ static int mpc5121_nfc_read_hw_config(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); struct mpc512x_reset_module *rm; struct device_node *rmnode; uint rcw_pagesize = 0; uint rcw_sparesize = 0; uint rcw_width; uint rcwh; uint romloc, ps; int ret = 0; rmnode = of_find_compatible_node(NULL, NULL, "fsl,mpc5121-reset"); if (!rmnode) { dev_err(prv->dev, "Missing 'fsl,mpc5121-reset' " "node in device tree!\n"); return -ENODEV; } rm = of_iomap(rmnode, 0); if (!rm) { dev_err(prv->dev, "Error mapping reset module node!\n"); ret = -EBUSY; goto out; } rcwh = in_be32(&rm->rcwhr); /* Bit 6: NFC bus width */ rcw_width = ((rcwh >> 6) & 0x1) ? 2 : 1; /* Bit 7: NFC Page/Spare size */ ps = (rcwh >> 7) & 0x1; /* Bits [22:21]: ROM Location */ romloc = (rcwh >> 21) & 0x3; /* Decode RCW bits */ switch ((ps << 2) | romloc) { case 0x00: case 0x01: rcw_pagesize = 512; rcw_sparesize = 16; break; case 0x02: case 0x03: rcw_pagesize = 4096; rcw_sparesize = 128; break; case 0x04: case 0x05: rcw_pagesize = 2048; rcw_sparesize = 64; break; case 0x06: case 0x07: rcw_pagesize = 4096; rcw_sparesize = 218; break; } mtd->writesize = rcw_pagesize; mtd->oobsize = rcw_sparesize; if (rcw_width == 2) chip->options |= NAND_BUSWIDTH_16; dev_notice(prv->dev, "Configured for " "%u-bit NAND, page size %u " "with %u spare.\n", rcw_width * 8, rcw_pagesize, rcw_sparesize); iounmap(rm); out: of_node_put(rmnode); return ret; } /* Free driver resources */ static void mpc5121_nfc_free(struct device *dev, struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); if (prv->csreg) iounmap(prv->csreg); } static int mpc5121_nfc_attach_chip(struct nand_chip *chip) { if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT && chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) chip->ecc.algo = NAND_ECC_ALGO_HAMMING; return 0; } static const struct nand_controller_ops mpc5121_nfc_ops = { .attach_chip = mpc5121_nfc_attach_chip, }; static int mpc5121_nfc_probe(struct platform_device *op) { struct device_node *dn = op->dev.of_node; struct clk *clk; struct device *dev = &op->dev; struct mpc5121_nfc_prv *prv; struct resource res; struct mtd_info *mtd; struct nand_chip *chip; unsigned long regs_paddr, regs_size; const __be32 *chips_no; int resettime = 0; int retval = 0; int rev, len; /* * Check SoC revision. This driver supports only NFC * in MPC5121 revision 2 and MPC5123 revision 3. */ rev = (mfspr(SPRN_SVR) >> 4) & 0xF; if ((rev != 2) && (rev != 3)) { dev_err(dev, "SoC revision %u is not supported!\n", rev); return -ENXIO; } prv = devm_kzalloc(dev, sizeof(*prv), GFP_KERNEL); if (!prv) return -ENOMEM; chip = &prv->chip; mtd = nand_to_mtd(chip); nand_controller_init(&prv->controller); prv->controller.ops = &mpc5121_nfc_ops; chip->controller = &prv->controller; mtd->dev.parent = dev; nand_set_controller_data(chip, prv); nand_set_flash_node(chip, dn); prv->dev = dev; /* Read NFC configuration from Reset Config Word */ retval = mpc5121_nfc_read_hw_config(mtd); if (retval) { dev_err(dev, "Unable to read NFC config!\n"); return retval; } prv->irq = irq_of_parse_and_map(dn, 0); if (!prv->irq) { dev_err(dev, "Error mapping IRQ!\n"); return -EINVAL; } retval = of_address_to_resource(dn, 0, &res); if (retval) { dev_err(dev, "Error parsing memory region!\n"); return retval; } chips_no = of_get_property(dn, "chips", &len); if (!chips_no || len != sizeof(*chips_no)) { dev_err(dev, "Invalid/missing 'chips' property!\n"); return -EINVAL; } regs_paddr = res.start; regs_size = resource_size(&res); if (!devm_request_mem_region(dev, regs_paddr, regs_size, DRV_NAME)) { dev_err(dev, "Error requesting memory region!\n"); return -EBUSY; } prv->regs = devm_ioremap(dev, regs_paddr, regs_size); if (!prv->regs) { dev_err(dev, "Error mapping memory region!\n"); return -ENOMEM; } mtd->name = "MPC5121 NAND"; chip->legacy.dev_ready = mpc5121_nfc_dev_ready; chip->legacy.cmdfunc = mpc5121_nfc_command; chip->legacy.read_byte = mpc5121_nfc_read_byte; chip->legacy.read_buf = mpc5121_nfc_read_buf; chip->legacy.write_buf = mpc5121_nfc_write_buf; chip->legacy.select_chip = mpc5121_nfc_select_chip; chip->legacy.set_features = nand_get_set_features_notsupp; chip->legacy.get_features = nand_get_set_features_notsupp; chip->bbt_options = NAND_BBT_USE_FLASH; /* Support external chip-select logic on ADS5121 board */ if (of_machine_is_compatible("fsl,mpc5121ads")) { retval = ads5121_chipselect_init(mtd); if (retval) { dev_err(dev, "Chipselect init error!\n"); return retval; } chip->legacy.select_chip = ads5121_select_chip; } /* Enable NFC clock */ clk = devm_clk_get_enabled(dev, "ipg"); if (IS_ERR(clk)) { dev_err(dev, "Unable to acquire and enable NFC clock!\n"); retval = PTR_ERR(clk); goto error; } prv->clk = clk; /* Reset NAND Flash controller */ nfc_set(mtd, NFC_CONFIG1, NFC_RESET); while (nfc_read(mtd, NFC_CONFIG1) & NFC_RESET) { if (resettime++ >= NFC_RESET_TIMEOUT) { dev_err(dev, "Timeout while resetting NFC!\n"); retval = -EINVAL; goto error; } udelay(1); } /* Enable write to NFC memory */ nfc_write(mtd, NFC_CONFIG, NFC_BLS_UNLOCKED); /* Enable write to all NAND pages */ nfc_write(mtd, NFC_UNLOCKSTART_BLK0, 0x0000); nfc_write(mtd, NFC_UNLOCKEND_BLK0, 0xFFFF); nfc_write(mtd, NFC_WRPROT, NFC_WPC_UNLOCK); /* * Setup NFC: * - Big Endian transfers, * - Interrupt after full page read/write. */ nfc_write(mtd, NFC_CONFIG1, NFC_BIG_ENDIAN | NFC_INT_MASK | NFC_FULL_PAGE_INT); /* Set spare area size */ nfc_write(mtd, NFC_SPAS, mtd->oobsize >> 1); init_waitqueue_head(&prv->irq_waitq); retval = devm_request_irq(dev, prv->irq, &mpc5121_nfc_irq, 0, DRV_NAME, mtd); if (retval) { dev_err(dev, "Error requesting IRQ!\n"); goto error; } /* * This driver assumes that the default ECC engine should be TYPE_SOFT. * Set ->engine_type before registering the NAND devices in order to * provide a driver specific default value. */ chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; /* Detect NAND chips */ retval = nand_scan(chip, be32_to_cpup(chips_no)); if (retval) { dev_err(dev, "NAND Flash not found !\n"); goto error; } /* Set erase block size */ switch (mtd->erasesize / mtd->writesize) { case 32: nfc_set(mtd, NFC_CONFIG1, NFC_PPB_32); break; case 64: nfc_set(mtd, NFC_CONFIG1, NFC_PPB_64); break; case 128: nfc_set(mtd, NFC_CONFIG1, NFC_PPB_128); break; case 256: nfc_set(mtd, NFC_CONFIG1, NFC_PPB_256); break; default: dev_err(dev, "Unsupported NAND flash!\n"); retval = -ENXIO; goto error; } dev_set_drvdata(dev, mtd); /* Register device in MTD */ retval = mtd_device_register(mtd, NULL, 0); if (retval) { dev_err(dev, "Error adding MTD device!\n"); goto error; } return 0; error: mpc5121_nfc_free(dev, mtd); return retval; } static void mpc5121_nfc_remove(struct platform_device *op) { struct device *dev = &op->dev; struct mtd_info *mtd = dev_get_drvdata(dev); int ret; ret = mtd_device_unregister(mtd); WARN_ON(ret); nand_cleanup(mtd_to_nand(mtd)); mpc5121_nfc_free(dev, mtd); } static const struct of_device_id mpc5121_nfc_match[] = { { .compatible = "fsl,mpc5121-nfc", }, {}, }; MODULE_DEVICE_TABLE(of, mpc5121_nfc_match); static struct platform_driver mpc5121_nfc_driver = { .probe = mpc5121_nfc_probe, .remove_new = mpc5121_nfc_remove, .driver = { .name = DRV_NAME, .of_match_table = mpc5121_nfc_match, }, }; module_platform_driver(mpc5121_nfc_driver); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("MPC5121 NAND MTD driver"); MODULE_LICENSE("GPL");