// SPDX-License-Identifier: GPL-2.0-only /* * MIPS-specific support for Broadcom STB S2/S3/S5 power management * * Copyright (C) 2016-2017 Broadcom */ #include <linux/kernel.h> #include <linux/printk.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/delay.h> #include <linux/suspend.h> #include <asm/bmips.h> #include <asm/tlbflush.h> #include "pm.h" #define S2_NUM_PARAMS 6 #define MAX_NUM_MEMC 3 /* S3 constants */ #define MAX_GP_REGS 16 #define MAX_CP0_REGS 32 #define NUM_MEMC_CLIENTS 128 #define AON_CTRL_RAM_SIZE 128 #define BRCMSTB_S3_MAGIC 0x5AFEB007 #define CLEAR_RESET_MASK 0x01 /* Index each CP0 register that needs to be saved */ #define CONTEXT 0 #define USER_LOCAL 1 #define PGMK 2 #define HWRENA 3 #define COMPARE 4 #define STATUS 5 #define CONFIG 6 #define MODE 7 #define EDSP 8 #define BOOT_VEC 9 #define EBASE 10 struct brcmstb_memc { void __iomem *ddr_phy_base; void __iomem *arb_base; }; struct brcmstb_pm_control { void __iomem *aon_ctrl_base; void __iomem *aon_sram_base; void __iomem *timers_base; struct brcmstb_memc memcs[MAX_NUM_MEMC]; int num_memc; }; struct brcm_pm_s3_context { u32 cp0_regs[MAX_CP0_REGS]; u32 memc0_rts[NUM_MEMC_CLIENTS]; u32 sc_boot_vec; }; struct brcmstb_mem_transfer; struct brcmstb_mem_transfer { struct brcmstb_mem_transfer *next; void *src; void *dst; dma_addr_t pa_src; dma_addr_t pa_dst; u32 len; u8 key; u8 mode; u8 src_remapped; u8 dst_remapped; u8 src_dst_remapped; }; #define AON_SAVE_SRAM(base, idx, val) \ __raw_writel(val, base + (idx << 2)) /* Used for saving registers in asm */ u32 gp_regs[MAX_GP_REGS]; #define BSP_CLOCK_STOP 0x00 #define PM_INITIATE 0x01 static struct brcmstb_pm_control ctrl; static void brcm_pm_save_cp0_context(struct brcm_pm_s3_context *ctx) { /* Generic MIPS */ ctx->cp0_regs[CONTEXT] = read_c0_context(); ctx->cp0_regs[USER_LOCAL] = read_c0_userlocal(); ctx->cp0_regs[PGMK] = read_c0_pagemask(); ctx->cp0_regs[HWRENA] = read_c0_cache(); ctx->cp0_regs[COMPARE] = read_c0_compare(); ctx->cp0_regs[STATUS] = read_c0_status(); /* Broadcom specific */ ctx->cp0_regs[CONFIG] = read_c0_brcm_config(); ctx->cp0_regs[MODE] = read_c0_brcm_mode(); ctx->cp0_regs[EDSP] = read_c0_brcm_edsp(); ctx->cp0_regs[BOOT_VEC] = read_c0_brcm_bootvec(); ctx->cp0_regs[EBASE] = read_c0_ebase(); ctx->sc_boot_vec = bmips_read_zscm_reg(0xa0); } static void brcm_pm_restore_cp0_context(struct brcm_pm_s3_context *ctx) { /* Restore cp0 state */ bmips_write_zscm_reg(0xa0, ctx->sc_boot_vec); /* Generic MIPS */ write_c0_context(ctx->cp0_regs[CONTEXT]); write_c0_userlocal(ctx->cp0_regs[USER_LOCAL]); write_c0_pagemask(ctx->cp0_regs[PGMK]); write_c0_cache(ctx->cp0_regs[HWRENA]); write_c0_compare(ctx->cp0_regs[COMPARE]); write_c0_status(ctx->cp0_regs[STATUS]); /* Broadcom specific */ write_c0_brcm_config(ctx->cp0_regs[CONFIG]); write_c0_brcm_mode(ctx->cp0_regs[MODE]); write_c0_brcm_edsp(ctx->cp0_regs[EDSP]); write_c0_brcm_bootvec(ctx->cp0_regs[BOOT_VEC]); write_c0_ebase(ctx->cp0_regs[EBASE]); } static void brcmstb_pm_handshake(void) { void __iomem *base = ctrl.aon_ctrl_base; u32 tmp; /* BSP power handshake, v1 */ tmp = __raw_readl(base + AON_CTRL_HOST_MISC_CMDS); tmp &= ~1UL; __raw_writel(tmp, base + AON_CTRL_HOST_MISC_CMDS); (void)__raw_readl(base + AON_CTRL_HOST_MISC_CMDS); __raw_writel(0, base + AON_CTRL_PM_INITIATE); (void)__raw_readl(base + AON_CTRL_PM_INITIATE); __raw_writel(BSP_CLOCK_STOP | PM_INITIATE, base + AON_CTRL_PM_INITIATE); /* * HACK: BSP may have internal race on the CLOCK_STOP command. * Avoid touching the BSP for a few milliseconds. */ mdelay(3); } static void brcmstb_pm_s5(void) { void __iomem *base = ctrl.aon_ctrl_base; brcmstb_pm_handshake(); /* Clear magic s3 warm-boot value */ AON_SAVE_SRAM(ctrl.aon_sram_base, 0, 0); /* Set the countdown */ __raw_writel(0x10, base + AON_CTRL_PM_CPU_WAIT_COUNT); (void)__raw_readl(base + AON_CTRL_PM_CPU_WAIT_COUNT); /* Prepare to S5 cold boot */ __raw_writel(PM_COLD_CONFIG, base + AON_CTRL_PM_CTRL); (void)__raw_readl(base + AON_CTRL_PM_CTRL); __raw_writel((PM_COLD_CONFIG | PM_PWR_DOWN), base + AON_CTRL_PM_CTRL); (void)__raw_readl(base + AON_CTRL_PM_CTRL); __asm__ __volatile__( " wait\n" : : : "memory"); } static int brcmstb_pm_s3(void) { struct brcm_pm_s3_context s3_context; void __iomem *memc_arb_base; unsigned long flags; u32 tmp; int i; /* Prepare for s3 */ AON_SAVE_SRAM(ctrl.aon_sram_base, 0, BRCMSTB_S3_MAGIC); AON_SAVE_SRAM(ctrl.aon_sram_base, 1, (u32)&s3_reentry); AON_SAVE_SRAM(ctrl.aon_sram_base, 2, 0); /* Clear RESET_HISTORY */ tmp = __raw_readl(ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL); tmp &= ~CLEAR_RESET_MASK; __raw_writel(tmp, ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL); local_irq_save(flags); /* Inhibit DDR_RSTb pulse for both MMCs*/ for (i = 0; i < ctrl.num_memc; i++) { tmp = __raw_readl(ctrl.memcs[i].ddr_phy_base + DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL); tmp &= ~0x0f; __raw_writel(tmp, ctrl.memcs[i].ddr_phy_base + DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL); tmp |= (0x05 | BIT(5)); __raw_writel(tmp, ctrl.memcs[i].ddr_phy_base + DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL); } /* Save CP0 context */ brcm_pm_save_cp0_context(&s3_context); /* Save RTS(skip debug register) */ memc_arb_base = ctrl.memcs[0].arb_base + 4; for (i = 0; i < NUM_MEMC_CLIENTS; i++) { s3_context.memc0_rts[i] = __raw_readl(memc_arb_base); memc_arb_base += 4; } /* Save I/O context */ local_flush_tlb_all(); _dma_cache_wback_inv(0, ~0); brcm_pm_do_s3(ctrl.aon_ctrl_base, current_cpu_data.dcache.linesz); /* CPU reconfiguration */ local_flush_tlb_all(); bmips_cpu_setup(); cpumask_clear(&bmips_booted_mask); /* Restore RTS (skip debug register) */ memc_arb_base = ctrl.memcs[0].arb_base + 4; for (i = 0; i < NUM_MEMC_CLIENTS; i++) { __raw_writel(s3_context.memc0_rts[i], memc_arb_base); memc_arb_base += 4; } /* restore CP0 context */ brcm_pm_restore_cp0_context(&s3_context); local_irq_restore(flags); return 0; } static int brcmstb_pm_s2(void) { /* * We need to pass 6 arguments to an assembly function. Lets avoid the * stack and pass arguments in a explicit 4 byte array. The assembly * code assumes all arguments are 4 bytes and arguments are ordered * like so: * * 0: AON_CTRl base register * 1: DDR_PHY base register * 2: TIMERS base resgister * 3: I-Cache line size * 4: Restart vector address * 5: Restart vector size */ u32 s2_params[6]; /* Prepare s2 parameters */ s2_params[0] = (u32)ctrl.aon_ctrl_base; s2_params[1] = (u32)ctrl.memcs[0].ddr_phy_base; s2_params[2] = (u32)ctrl.timers_base; s2_params[3] = (u32)current_cpu_data.icache.linesz; s2_params[4] = (u32)BMIPS_WARM_RESTART_VEC; s2_params[5] = (u32)(bmips_smp_int_vec_end - bmips_smp_int_vec); /* Drop to standby */ brcm_pm_do_s2(s2_params); return 0; } static int brcmstb_pm_standby(bool deep_standby) { brcmstb_pm_handshake(); /* Send IRQs to BMIPS_WARM_RESTART_VEC */ clear_c0_cause(CAUSEF_IV); irq_disable_hazard(); set_c0_status(ST0_BEV); irq_disable_hazard(); if (deep_standby) brcmstb_pm_s3(); else brcmstb_pm_s2(); /* Send IRQs to normal runtime vectors */ clear_c0_status(ST0_BEV); irq_disable_hazard(); set_c0_cause(CAUSEF_IV); irq_disable_hazard(); return 0; } static int brcmstb_pm_enter(suspend_state_t state) { int ret = -EINVAL; switch (state) { case PM_SUSPEND_STANDBY: ret = brcmstb_pm_standby(false); break; case PM_SUSPEND_MEM: ret = brcmstb_pm_standby(true); break; } return ret; } static int brcmstb_pm_valid(suspend_state_t state) { switch (state) { case PM_SUSPEND_STANDBY: return true; case PM_SUSPEND_MEM: return true; default: return false; } } static const struct platform_suspend_ops brcmstb_pm_ops = { .enter = brcmstb_pm_enter, .valid = brcmstb_pm_valid, }; static const struct of_device_id aon_ctrl_dt_ids[] = { { .compatible = "brcm,brcmstb-aon-ctrl" }, { /* sentinel */ } }; static const struct of_device_id ddr_phy_dt_ids[] = { { .compatible = "brcm,brcmstb-ddr-phy" }, { /* sentinel */ } }; static const struct of_device_id arb_dt_ids[] = { { .compatible = "brcm,brcmstb-memc-arb" }, { /* sentinel */ } }; static const struct of_device_id timers_ids[] = { { .compatible = "brcm,brcmstb-timers" }, { /* sentinel */ } }; static inline void __iomem *brcmstb_ioremap_node(struct device_node *dn, int index) { return of_io_request_and_map(dn, index, dn->full_name); } static void __iomem *brcmstb_ioremap_match(const struct of_device_id *matches, int index, const void **ofdata) { struct device_node *dn; const struct of_device_id *match; dn = of_find_matching_node_and_match(NULL, matches, &match); if (!dn) return ERR_PTR(-EINVAL); if (ofdata) *ofdata = match->data; return brcmstb_ioremap_node(dn, index); } static int brcmstb_pm_init(void) { struct device_node *dn; void __iomem *base; int i; /* AON ctrl registers */ base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 0, NULL); if (IS_ERR(base)) { pr_err("error mapping AON_CTRL\n"); goto aon_err; } ctrl.aon_ctrl_base = base; /* AON SRAM registers */ base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 1, NULL); if (IS_ERR(base)) { pr_err("error mapping AON_SRAM\n"); goto sram_err; } ctrl.aon_sram_base = base; ctrl.num_memc = 0; /* Map MEMC DDR PHY registers */ for_each_matching_node(dn, ddr_phy_dt_ids) { i = ctrl.num_memc; if (i >= MAX_NUM_MEMC) { pr_warn("Too many MEMCs (max %d)\n", MAX_NUM_MEMC); of_node_put(dn); break; } base = brcmstb_ioremap_node(dn, 0); if (IS_ERR(base)) { of_node_put(dn); goto ddr_err; } ctrl.memcs[i].ddr_phy_base = base; ctrl.num_memc++; } /* MEMC ARB registers */ base = brcmstb_ioremap_match(arb_dt_ids, 0, NULL); if (IS_ERR(base)) { pr_err("error mapping MEMC ARB\n"); goto ddr_err; } ctrl.memcs[0].arb_base = base; /* Timer registers */ base = brcmstb_ioremap_match(timers_ids, 0, NULL); if (IS_ERR(base)) { pr_err("error mapping timers\n"); goto tmr_err; } ctrl.timers_base = base; /* s3 cold boot aka s5 */ pm_power_off = brcmstb_pm_s5; suspend_set_ops(&brcmstb_pm_ops); return 0; tmr_err: iounmap(ctrl.memcs[0].arb_base); ddr_err: for (i = 0; i < ctrl.num_memc; i++) iounmap(ctrl.memcs[i].ddr_phy_base); iounmap(ctrl.aon_sram_base); sram_err: iounmap(ctrl.aon_ctrl_base); aon_err: return PTR_ERR(base); } arch_initcall(brcmstb_pm_init);