/* * Copyright (C) 2007-2013 Michal Simek <monstr@monstr.eu> * Copyright (C) 2012-2013 Xilinx, Inc. * Copyright (C) 2007-2009 PetaLogix * Copyright (C) 2006 Atmark Techno, Inc. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/sched_clock.h> #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/timecounter.h> #include <asm/cpuinfo.h> static void __iomem *timer_baseaddr; static unsigned int freq_div_hz; static unsigned int timer_clock_freq; #define TCSR0 (0x00) #define TLR0 (0x04) #define TCR0 (0x08) #define TCSR1 (0x10) #define TLR1 (0x14) #define TCR1 (0x18) #define TCSR_MDT (1<<0) #define TCSR_UDT (1<<1) #define TCSR_GENT (1<<2) #define TCSR_CAPT (1<<3) #define TCSR_ARHT (1<<4) #define TCSR_LOAD (1<<5) #define TCSR_ENIT (1<<6) #define TCSR_ENT (1<<7) #define TCSR_TINT (1<<8) #define TCSR_PWMA (1<<9) #define TCSR_ENALL (1<<10) static unsigned int (*read_fn)(void __iomem *); static void (*write_fn)(u32, void __iomem *); static void timer_write32(u32 val, void __iomem *addr) { iowrite32(val, addr); } static unsigned int timer_read32(void __iomem *addr) { return ioread32(addr); } static void timer_write32_be(u32 val, void __iomem *addr) { iowrite32be(val, addr); } static unsigned int timer_read32_be(void __iomem *addr) { return ioread32be(addr); } static inline void xilinx_timer0_stop(void) { write_fn(read_fn(timer_baseaddr + TCSR0) & ~TCSR_ENT, timer_baseaddr + TCSR0); } static inline void xilinx_timer0_start_periodic(unsigned long load_val) { if (!load_val) load_val = 1; /* loading value to timer reg */ write_fn(load_val, timer_baseaddr + TLR0); /* load the initial value */ write_fn(TCSR_LOAD, timer_baseaddr + TCSR0); /* see timer data sheet for detail * !ENALL - don't enable 'em all * !PWMA - disable pwm * TINT - clear interrupt status * ENT- enable timer itself * ENIT - enable interrupt * !LOAD - clear the bit to let go * ARHT - auto reload * !CAPT - no external trigger * !GENT - no external signal * UDT - set the timer as down counter * !MDT0 - generate mode */ write_fn(TCSR_TINT|TCSR_ENIT|TCSR_ENT|TCSR_ARHT|TCSR_UDT, timer_baseaddr + TCSR0); } static inline void xilinx_timer0_start_oneshot(unsigned long load_val) { if (!load_val) load_val = 1; /* loading value to timer reg */ write_fn(load_val, timer_baseaddr + TLR0); /* load the initial value */ write_fn(TCSR_LOAD, timer_baseaddr + TCSR0); write_fn(TCSR_TINT|TCSR_ENIT|TCSR_ENT|TCSR_ARHT|TCSR_UDT, timer_baseaddr + TCSR0); } static int xilinx_timer_set_next_event(unsigned long delta, struct clock_event_device *dev) { pr_debug("%s: next event, delta %x\n", __func__, (u32)delta); xilinx_timer0_start_oneshot(delta); return 0; } static int xilinx_timer_shutdown(struct clock_event_device *evt) { pr_info("%s\n", __func__); xilinx_timer0_stop(); return 0; } static int xilinx_timer_set_periodic(struct clock_event_device *evt) { pr_info("%s\n", __func__); xilinx_timer0_start_periodic(freq_div_hz); return 0; } static struct clock_event_device clockevent_xilinx_timer = { .name = "xilinx_clockevent", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .shift = 8, .rating = 300, .set_next_event = xilinx_timer_set_next_event, .set_state_shutdown = xilinx_timer_shutdown, .set_state_periodic = xilinx_timer_set_periodic, }; static inline void timer_ack(void) { write_fn(read_fn(timer_baseaddr + TCSR0), timer_baseaddr + TCSR0); } static irqreturn_t timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = &clockevent_xilinx_timer; timer_ack(); evt->event_handler(evt); return IRQ_HANDLED; } static __init int xilinx_clockevent_init(void) { clockevent_xilinx_timer.mult = div_sc(timer_clock_freq, NSEC_PER_SEC, clockevent_xilinx_timer.shift); clockevent_xilinx_timer.max_delta_ns = clockevent_delta2ns((u32)~0, &clockevent_xilinx_timer); clockevent_xilinx_timer.max_delta_ticks = (u32)~0; clockevent_xilinx_timer.min_delta_ns = clockevent_delta2ns(1, &clockevent_xilinx_timer); clockevent_xilinx_timer.min_delta_ticks = 1; clockevent_xilinx_timer.cpumask = cpumask_of(0); clockevents_register_device(&clockevent_xilinx_timer); return 0; } static u64 xilinx_clock_read(void) { return read_fn(timer_baseaddr + TCR1); } static u64 xilinx_read(struct clocksource *cs) { /* reading actual value of timer 1 */ return (u64)xilinx_clock_read(); } static struct timecounter xilinx_tc = { .cc = NULL, }; static u64 xilinx_cc_read(const struct cyclecounter *cc) { return xilinx_read(NULL); } static struct cyclecounter xilinx_cc = { .read = xilinx_cc_read, .mask = CLOCKSOURCE_MASK(32), .shift = 8, }; static int __init init_xilinx_timecounter(void) { xilinx_cc.mult = div_sc(timer_clock_freq, NSEC_PER_SEC, xilinx_cc.shift); timecounter_init(&xilinx_tc, &xilinx_cc, sched_clock()); return 0; } static struct clocksource clocksource_microblaze = { .name = "xilinx_clocksource", .rating = 300, .read = xilinx_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int __init xilinx_clocksource_init(void) { int ret; ret = clocksource_register_hz(&clocksource_microblaze, timer_clock_freq); if (ret) { pr_err("failed to register clocksource"); return ret; } /* stop timer1 */ write_fn(read_fn(timer_baseaddr + TCSR1) & ~TCSR_ENT, timer_baseaddr + TCSR1); /* start timer1 - up counting without interrupt */ write_fn(TCSR_TINT|TCSR_ENT|TCSR_ARHT, timer_baseaddr + TCSR1); /* register timecounter - for ftrace support */ return init_xilinx_timecounter(); } static int __init xilinx_timer_init(struct device_node *timer) { struct clk *clk; static int initialized; u32 irq; u32 timer_num = 1; int ret; /* If this property is present, the device is a PWM and not a timer */ if (of_property_read_bool(timer, "#pwm-cells")) return 0; if (initialized) return -EINVAL; initialized = 1; timer_baseaddr = of_iomap(timer, 0); if (!timer_baseaddr) { pr_err("ERROR: invalid timer base address\n"); return -ENXIO; } write_fn = timer_write32; read_fn = timer_read32; write_fn(TCSR_MDT, timer_baseaddr + TCSR0); if (!(read_fn(timer_baseaddr + TCSR0) & TCSR_MDT)) { write_fn = timer_write32_be; read_fn = timer_read32_be; } irq = irq_of_parse_and_map(timer, 0); if (irq <= 0) { pr_err("Failed to parse and map irq"); return -EINVAL; } of_property_read_u32(timer, "xlnx,one-timer-only", &timer_num); if (timer_num) { pr_err("Please enable two timers in HW\n"); return -EINVAL; } pr_info("%pOF: irq=%d\n", timer, irq); clk = of_clk_get(timer, 0); if (IS_ERR(clk)) { pr_err("ERROR: timer CCF input clock not found\n"); /* If there is clock-frequency property than use it */ of_property_read_u32(timer, "clock-frequency", &timer_clock_freq); } else { timer_clock_freq = clk_get_rate(clk); } if (!timer_clock_freq) { pr_err("ERROR: Using CPU clock frequency\n"); timer_clock_freq = cpuinfo.cpu_clock_freq; } freq_div_hz = timer_clock_freq / HZ; ret = request_irq(irq, timer_interrupt, IRQF_TIMER, "timer", &clockevent_xilinx_timer); if (ret) { pr_err("Failed to setup IRQ"); return ret; } ret = xilinx_clocksource_init(); if (ret) return ret; ret = xilinx_clockevent_init(); if (ret) return ret; sched_clock_register(xilinx_clock_read, 32, timer_clock_freq); return 0; } TIMER_OF_DECLARE(xilinx_timer, "xlnx,xps-timer-1.00.a", xilinx_timer_init);