// SPDX-License-Identifier: GPL-2.0 #include <stdio.h> #include <stdlib.h> #include <linux/string.h> #include "../../util/callchain.h" #include "../../util/debug.h" #include "../../util/event.h" #include "../../util/hist.h" #include "../../util/map.h" #include "../../util/maps.h" #include "../../util/symbol.h" #include "../../util/sort.h" #include "../../util/evsel.h" #include "../../util/srcline.h" #include "../../util/string2.h" #include "../../util/thread.h" #include "../../util/block-info.h" #include <linux/ctype.h> #include <linux/zalloc.h> static size_t callchain__fprintf_left_margin(FILE *fp, int left_margin) { int i; int ret = fprintf(fp, " "); for (i = 0; i < left_margin; i++) ret += fprintf(fp, " "); return ret; } static size_t ipchain__fprintf_graph_line(FILE *fp, int depth, int depth_mask, int left_margin) { int i; size_t ret = callchain__fprintf_left_margin(fp, left_margin); for (i = 0; i < depth; i++) if (depth_mask & (1 << i)) ret += fprintf(fp, "| "); else ret += fprintf(fp, " "); ret += fprintf(fp, "\n"); return ret; } static size_t ipchain__fprintf_graph(FILE *fp, struct callchain_node *node, struct callchain_list *chain, int depth, int depth_mask, int period, u64 total_samples, int left_margin) { int i; size_t ret = 0; char bf[1024], *alloc_str = NULL; char buf[64]; const char *str; ret += callchain__fprintf_left_margin(fp, left_margin); for (i = 0; i < depth; i++) { if (depth_mask & (1 << i)) ret += fprintf(fp, "|"); else ret += fprintf(fp, " "); if (!period && i == depth - 1) { ret += fprintf(fp, "--"); ret += callchain_node__fprintf_value(node, fp, total_samples); ret += fprintf(fp, "--"); } else ret += fprintf(fp, "%s", " "); } str = callchain_list__sym_name(chain, bf, sizeof(bf), false); if (symbol_conf.show_branchflag_count) { callchain_list_counts__printf_value(chain, NULL, buf, sizeof(buf)); if (asprintf(&alloc_str, "%s%s", str, buf) < 0) str = "Not enough memory!"; else str = alloc_str; } fputs(str, fp); fputc('\n', fp); free(alloc_str); return ret; } static struct symbol *rem_sq_bracket; static struct callchain_list rem_hits; static void init_rem_hits(void) { rem_sq_bracket = malloc(sizeof(*rem_sq_bracket) + 6); if (!rem_sq_bracket) { fprintf(stderr, "Not enough memory to display remaining hits\n"); return; } strcpy(rem_sq_bracket->name, "[...]"); rem_hits.ms.sym = rem_sq_bracket; } static size_t __callchain__fprintf_graph(FILE *fp, struct rb_root *root, u64 total_samples, int depth, int depth_mask, int left_margin) { struct rb_node *node, *next; struct callchain_node *child = NULL; struct callchain_list *chain; int new_depth_mask = depth_mask; u64 remaining; size_t ret = 0; int i; uint entries_printed = 0; int cumul_count = 0; remaining = total_samples; node = rb_first(root); while (node) { u64 new_total; u64 cumul; child = rb_entry(node, struct callchain_node, rb_node); cumul = callchain_cumul_hits(child); remaining -= cumul; cumul_count += callchain_cumul_counts(child); /* * The depth mask manages the output of pipes that show * the depth. We don't want to keep the pipes of the current * level for the last child of this depth. * Except if we have remaining filtered hits. They will * supersede the last child */ next = rb_next(node); if (!next && (callchain_param.mode != CHAIN_GRAPH_REL || !remaining)) new_depth_mask &= ~(1 << (depth - 1)); /* * But we keep the older depth mask for the line separator * to keep the level link until we reach the last child */ ret += ipchain__fprintf_graph_line(fp, depth, depth_mask, left_margin); i = 0; list_for_each_entry(chain, &child->val, list) { ret += ipchain__fprintf_graph(fp, child, chain, depth, new_depth_mask, i++, total_samples, left_margin); } if (callchain_param.mode == CHAIN_GRAPH_REL) new_total = child->children_hit; else new_total = total_samples; ret += __callchain__fprintf_graph(fp, &child->rb_root, new_total, depth + 1, new_depth_mask | (1 << depth), left_margin); node = next; if (++entries_printed == callchain_param.print_limit) break; } if (callchain_param.mode == CHAIN_GRAPH_REL && remaining && remaining != total_samples) { struct callchain_node rem_node = { .hit = remaining, }; if (!rem_sq_bracket) return ret; if (callchain_param.value == CCVAL_COUNT && child && child->parent) { rem_node.count = child->parent->children_count - cumul_count; if (rem_node.count <= 0) return ret; } new_depth_mask &= ~(1 << (depth - 1)); ret += ipchain__fprintf_graph(fp, &rem_node, &rem_hits, depth, new_depth_mask, 0, total_samples, left_margin); } return ret; } /* * If have one single callchain root, don't bother printing * its percentage (100 % in fractal mode and the same percentage * than the hist in graph mode). This also avoid one level of column. * * However when percent-limit applied, it's possible that single callchain * node have different (non-100% in fractal mode) percentage. */ static bool need_percent_display(struct rb_node *node, u64 parent_samples) { struct callchain_node *cnode; if (rb_next(node)) return true; cnode = rb_entry(node, struct callchain_node, rb_node); return callchain_cumul_hits(cnode) != parent_samples; } static size_t callchain__fprintf_graph(FILE *fp, struct rb_root *root, u64 total_samples, u64 parent_samples, int left_margin) { struct callchain_node *cnode; struct callchain_list *chain; u32 entries_printed = 0; bool printed = false; struct rb_node *node; int i = 0; int ret = 0; char bf[1024]; node = rb_first(root); if (node && !need_percent_display(node, parent_samples)) { cnode = rb_entry(node, struct callchain_node, rb_node); list_for_each_entry(chain, &cnode->val, list) { /* * If we sort by symbol, the first entry is the same than * the symbol. No need to print it otherwise it appears as * displayed twice. */ if (!i++ && field_order == NULL && sort_order && strstarts(sort_order, "sym")) continue; if (!printed) { ret += callchain__fprintf_left_margin(fp, left_margin); ret += fprintf(fp, "|\n"); ret += callchain__fprintf_left_margin(fp, left_margin); ret += fprintf(fp, "---"); left_margin += 3; printed = true; } else ret += callchain__fprintf_left_margin(fp, left_margin); ret += fprintf(fp, "%s", callchain_list__sym_name(chain, bf, sizeof(bf), false)); if (symbol_conf.show_branchflag_count) ret += callchain_list_counts__printf_value( chain, fp, NULL, 0); ret += fprintf(fp, "\n"); if (++entries_printed == callchain_param.print_limit) break; } root = &cnode->rb_root; } if (callchain_param.mode == CHAIN_GRAPH_REL) total_samples = parent_samples; ret += __callchain__fprintf_graph(fp, root, total_samples, 1, 1, left_margin); if (ret) { /* do not add a blank line if it printed nothing */ ret += fprintf(fp, "\n"); } return ret; } static size_t __callchain__fprintf_flat(FILE *fp, struct callchain_node *node, u64 total_samples) { struct callchain_list *chain; size_t ret = 0; char bf[1024]; if (!node) return 0; ret += __callchain__fprintf_flat(fp, node->parent, total_samples); list_for_each_entry(chain, &node->val, list) { if (chain->ip >= PERF_CONTEXT_MAX) continue; ret += fprintf(fp, " %s\n", callchain_list__sym_name(chain, bf, sizeof(bf), false)); } return ret; } static size_t callchain__fprintf_flat(FILE *fp, struct rb_root *tree, u64 total_samples) { size_t ret = 0; u32 entries_printed = 0; struct callchain_node *chain; struct rb_node *rb_node = rb_first(tree); while (rb_node) { chain = rb_entry(rb_node, struct callchain_node, rb_node); ret += fprintf(fp, " "); ret += callchain_node__fprintf_value(chain, fp, total_samples); ret += fprintf(fp, "\n"); ret += __callchain__fprintf_flat(fp, chain, total_samples); ret += fprintf(fp, "\n"); if (++entries_printed == callchain_param.print_limit) break; rb_node = rb_next(rb_node); } return ret; } static size_t __callchain__fprintf_folded(FILE *fp, struct callchain_node *node) { const char *sep = symbol_conf.field_sep ?: ";"; struct callchain_list *chain; size_t ret = 0; char bf[1024]; bool first; if (!node) return 0; ret += __callchain__fprintf_folded(fp, node->parent); first = (ret == 0); list_for_each_entry(chain, &node->val, list) { if (chain->ip >= PERF_CONTEXT_MAX) continue; ret += fprintf(fp, "%s%s", first ? "" : sep, callchain_list__sym_name(chain, bf, sizeof(bf), false)); first = false; } return ret; } static size_t callchain__fprintf_folded(FILE *fp, struct rb_root *tree, u64 total_samples) { size_t ret = 0; u32 entries_printed = 0; struct callchain_node *chain; struct rb_node *rb_node = rb_first(tree); while (rb_node) { chain = rb_entry(rb_node, struct callchain_node, rb_node); ret += callchain_node__fprintf_value(chain, fp, total_samples); ret += fprintf(fp, " "); ret += __callchain__fprintf_folded(fp, chain); ret += fprintf(fp, "\n"); if (++entries_printed == callchain_param.print_limit) break; rb_node = rb_next(rb_node); } return ret; } static size_t hist_entry_callchain__fprintf(struct hist_entry *he, u64 total_samples, int left_margin, FILE *fp) { u64 parent_samples = he->stat.period; if (symbol_conf.cumulate_callchain) parent_samples = he->stat_acc->period; switch (callchain_param.mode) { case CHAIN_GRAPH_REL: return callchain__fprintf_graph(fp, &he->sorted_chain, total_samples, parent_samples, left_margin); break; case CHAIN_GRAPH_ABS: return callchain__fprintf_graph(fp, &he->sorted_chain, total_samples, parent_samples, left_margin); break; case CHAIN_FLAT: return callchain__fprintf_flat(fp, &he->sorted_chain, total_samples); break; case CHAIN_FOLDED: return callchain__fprintf_folded(fp, &he->sorted_chain, total_samples); break; case CHAIN_NONE: break; default: pr_err("Bad callchain mode\n"); } return 0; } int __hist_entry__snprintf(struct hist_entry *he, struct perf_hpp *hpp, struct perf_hpp_list *hpp_list) { const char *sep = symbol_conf.field_sep; struct perf_hpp_fmt *fmt; char *start = hpp->buf; int ret; bool first = true; if (symbol_conf.exclude_other && !he->parent) return 0; perf_hpp_list__for_each_format(hpp_list, fmt) { if (perf_hpp__should_skip(fmt, he->hists)) continue; /* * If there's no field_sep, we still need * to display initial ' '. */ if (!sep || !first) { ret = scnprintf(hpp->buf, hpp->size, "%s", sep ?: " "); advance_hpp(hpp, ret); } else first = false; if (perf_hpp__use_color() && fmt->color) ret = fmt->color(fmt, hpp, he); else ret = fmt->entry(fmt, hpp, he); ret = hist_entry__snprintf_alignment(he, hpp, fmt, ret); advance_hpp(hpp, ret); } return hpp->buf - start; } static int hist_entry__snprintf(struct hist_entry *he, struct perf_hpp *hpp) { return __hist_entry__snprintf(he, hpp, he->hists->hpp_list); } static int hist_entry__hierarchy_fprintf(struct hist_entry *he, struct perf_hpp *hpp, struct hists *hists, FILE *fp) { const char *sep = symbol_conf.field_sep; struct perf_hpp_fmt *fmt; struct perf_hpp_list_node *fmt_node; char *buf = hpp->buf; size_t size = hpp->size; int ret, printed = 0; bool first = true; if (symbol_conf.exclude_other && !he->parent) return 0; ret = scnprintf(hpp->buf, hpp->size, "%*s", he->depth * HIERARCHY_INDENT, ""); advance_hpp(hpp, ret); /* the first hpp_list_node is for overhead columns */ fmt_node = list_first_entry(&hists->hpp_formats, struct perf_hpp_list_node, list); perf_hpp_list__for_each_format(&fmt_node->hpp, fmt) { /* * If there's no field_sep, we still need * to display initial ' '. */ if (!sep || !first) { ret = scnprintf(hpp->buf, hpp->size, "%s", sep ?: " "); advance_hpp(hpp, ret); } else first = false; if (perf_hpp__use_color() && fmt->color) ret = fmt->color(fmt, hpp, he); else ret = fmt->entry(fmt, hpp, he); ret = hist_entry__snprintf_alignment(he, hpp, fmt, ret); advance_hpp(hpp, ret); } if (!sep) ret = scnprintf(hpp->buf, hpp->size, "%*s", (hists->nr_hpp_node - 2) * HIERARCHY_INDENT, ""); advance_hpp(hpp, ret); printed += fprintf(fp, "%s", buf); perf_hpp_list__for_each_format(he->hpp_list, fmt) { hpp->buf = buf; hpp->size = size; /* * No need to call hist_entry__snprintf_alignment() since this * fmt is always the last column in the hierarchy mode. */ if (perf_hpp__use_color() && fmt->color) fmt->color(fmt, hpp, he); else fmt->entry(fmt, hpp, he); /* * dynamic entries are right-aligned but we want left-aligned * in the hierarchy mode */ printed += fprintf(fp, "%s%s", sep ?: " ", skip_spaces(buf)); } printed += putc('\n', fp); if (he->leaf && hist_entry__has_callchains(he) && symbol_conf.use_callchain) { u64 total = hists__total_period(hists); printed += hist_entry_callchain__fprintf(he, total, 0, fp); goto out; } out: return printed; } static int hist_entry__block_fprintf(struct hist_entry *he, char *bf, size_t size, FILE *fp) { struct block_hist *bh = container_of(he, struct block_hist, he); int ret = 0; for (unsigned int i = 0; i < bh->block_hists.nr_entries; i++) { struct perf_hpp hpp = { .buf = bf, .size = size, .skip = false, }; bh->block_idx = i; hist_entry__snprintf(he, &hpp); if (!hpp.skip) ret += fprintf(fp, "%s\n", bf); } return ret; } static int hist_entry__individual_block_fprintf(struct hist_entry *he, char *bf, size_t size, FILE *fp) { int ret = 0; struct perf_hpp hpp = { .buf = bf, .size = size, .skip = false, }; hist_entry__snprintf(he, &hpp); if (!hpp.skip) ret += fprintf(fp, "%s\n", bf); return ret; } static int hist_entry__fprintf(struct hist_entry *he, size_t size, char *bf, size_t bfsz, FILE *fp, bool ignore_callchains) { int ret; int callchain_ret = 0; struct perf_hpp hpp = { .buf = bf, .size = size, }; struct hists *hists = he->hists; u64 total_period = hists->stats.total_period; if (size == 0 || size > bfsz) size = hpp.size = bfsz; if (symbol_conf.report_hierarchy) return hist_entry__hierarchy_fprintf(he, &hpp, hists, fp); if (symbol_conf.report_block) return hist_entry__block_fprintf(he, bf, size, fp); if (symbol_conf.report_individual_block) return hist_entry__individual_block_fprintf(he, bf, size, fp); hist_entry__snprintf(he, &hpp); ret = fprintf(fp, "%s\n", bf); if (hist_entry__has_callchains(he) && !ignore_callchains) callchain_ret = hist_entry_callchain__fprintf(he, total_period, 0, fp); ret += callchain_ret; return ret; } static int print_hierarchy_indent(const char *sep, int indent, const char *line, FILE *fp) { int width; if (sep != NULL || indent < 2) return 0; width = (indent - 2) * HIERARCHY_INDENT; return fprintf(fp, "%-*.*s", width, width, line); } static int hists__fprintf_hierarchy_headers(struct hists *hists, struct perf_hpp *hpp, FILE *fp) { bool first_node, first_col; int indent; int depth; unsigned width = 0; unsigned header_width = 0; struct perf_hpp_fmt *fmt; struct perf_hpp_list_node *fmt_node; const char *sep = symbol_conf.field_sep; indent = hists->nr_hpp_node; /* preserve max indent depth for column headers */ print_hierarchy_indent(sep, indent, " ", fp); /* the first hpp_list_node is for overhead columns */ fmt_node = list_first_entry(&hists->hpp_formats, struct perf_hpp_list_node, list); perf_hpp_list__for_each_format(&fmt_node->hpp, fmt) { fmt->header(fmt, hpp, hists, 0, NULL); fprintf(fp, "%s%s", hpp->buf, sep ?: " "); } /* combine sort headers with ' / ' */ first_node = true; list_for_each_entry_continue(fmt_node, &hists->hpp_formats, list) { if (!first_node) header_width += fprintf(fp, " / "); first_node = false; first_col = true; perf_hpp_list__for_each_format(&fmt_node->hpp, fmt) { if (perf_hpp__should_skip(fmt, hists)) continue; if (!first_col) header_width += fprintf(fp, "+"); first_col = false; fmt->header(fmt, hpp, hists, 0, NULL); header_width += fprintf(fp, "%s", strim(hpp->buf)); } } fprintf(fp, "\n# "); /* preserve max indent depth for initial dots */ print_hierarchy_indent(sep, indent, dots, fp); /* the first hpp_list_node is for overhead columns */ fmt_node = list_first_entry(&hists->hpp_formats, struct perf_hpp_list_node, list); first_col = true; perf_hpp_list__for_each_format(&fmt_node->hpp, fmt) { if (!first_col) fprintf(fp, "%s", sep ?: ".."); first_col = false; width = fmt->width(fmt, hpp, hists); fprintf(fp, "%.*s", width, dots); } depth = 0; list_for_each_entry_continue(fmt_node, &hists->hpp_formats, list) { first_col = true; width = depth * HIERARCHY_INDENT; perf_hpp_list__for_each_format(&fmt_node->hpp, fmt) { if (perf_hpp__should_skip(fmt, hists)) continue; if (!first_col) width++; /* for '+' sign between column header */ first_col = false; width += fmt->width(fmt, hpp, hists); } if (width > header_width) header_width = width; depth++; } fprintf(fp, "%s%-.*s", sep ?: " ", header_width, dots); fprintf(fp, "\n#\n"); return 2; } static void fprintf_line(struct hists *hists, struct perf_hpp *hpp, int line, FILE *fp) { struct perf_hpp_fmt *fmt; const char *sep = symbol_conf.field_sep; bool first = true; int span = 0; hists__for_each_format(hists, fmt) { if (perf_hpp__should_skip(fmt, hists)) continue; if (!first && !span) fprintf(fp, "%s", sep ?: " "); else first = false; fmt->header(fmt, hpp, hists, line, &span); if (!span) fprintf(fp, "%s", hpp->buf); } } static int hists__fprintf_standard_headers(struct hists *hists, struct perf_hpp *hpp, FILE *fp) { struct perf_hpp_list *hpp_list = hists->hpp_list; struct perf_hpp_fmt *fmt; unsigned int width; const char *sep = symbol_conf.field_sep; bool first = true; int line; for (line = 0; line < hpp_list->nr_header_lines; line++) { /* first # is displayed one level up */ if (line) fprintf(fp, "# "); fprintf_line(hists, hpp, line, fp); fprintf(fp, "\n"); } if (sep) return hpp_list->nr_header_lines; first = true; fprintf(fp, "# "); hists__for_each_format(hists, fmt) { unsigned int i; if (perf_hpp__should_skip(fmt, hists)) continue; if (!first) fprintf(fp, "%s", sep ?: " "); else first = false; width = fmt->width(fmt, hpp, hists); for (i = 0; i < width; i++) fprintf(fp, "."); } fprintf(fp, "\n"); fprintf(fp, "#\n"); return hpp_list->nr_header_lines + 2; } int hists__fprintf_headers(struct hists *hists, FILE *fp) { char bf[1024]; struct perf_hpp dummy_hpp = { .buf = bf, .size = sizeof(bf), }; fprintf(fp, "# "); if (symbol_conf.report_hierarchy) return hists__fprintf_hierarchy_headers(hists, &dummy_hpp, fp); else return hists__fprintf_standard_headers(hists, &dummy_hpp, fp); } size_t hists__fprintf(struct hists *hists, bool show_header, int max_rows, int max_cols, float min_pcnt, FILE *fp, bool ignore_callchains) { struct rb_node *nd; size_t ret = 0; const char *sep = symbol_conf.field_sep; int nr_rows = 0; size_t linesz; char *line = NULL; unsigned indent; init_rem_hits(); hists__reset_column_width(hists); if (symbol_conf.col_width_list_str) perf_hpp__set_user_width(symbol_conf.col_width_list_str); if (show_header) nr_rows += hists__fprintf_headers(hists, fp); if (max_rows && nr_rows >= max_rows) goto out; linesz = hists__sort_list_width(hists) + 3 + 1; linesz += perf_hpp__color_overhead(); line = malloc(linesz); if (line == NULL) { ret = -1; goto out; } indent = hists__overhead_width(hists) + 4; for (nd = rb_first_cached(&hists->entries); nd; nd = __rb_hierarchy_next(nd, HMD_FORCE_CHILD)) { struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); float percent; if (h->filtered) continue; if (symbol_conf.report_individual_block) percent = block_info__total_cycles_percent(h); else percent = hist_entry__get_percent_limit(h); if (percent < min_pcnt) continue; ret += hist_entry__fprintf(h, max_cols, line, linesz, fp, ignore_callchains); if (max_rows && ++nr_rows >= max_rows) break; /* * If all children are filtered out or percent-limited, * display "no entry >= x.xx%" message. */ if (!h->leaf && !hist_entry__has_hierarchy_children(h, min_pcnt)) { int depth = hists->nr_hpp_node + h->depth + 1; print_hierarchy_indent(sep, depth, " ", fp); fprintf(fp, "%*sno entry >= %.2f%%\n", indent, "", min_pcnt); if (max_rows && ++nr_rows >= max_rows) break; } if (h->ms.map == NULL && verbose > 1) { maps__fprintf(thread__maps(h->thread), fp); fprintf(fp, "%.10s end\n", graph_dotted_line); } } free(line); out: zfree(&rem_sq_bracket); return ret; } size_t events_stats__fprintf(struct events_stats *stats, FILE *fp, bool skip_empty) { int i; size_t ret = 0; u32 total = stats->nr_events[0]; for (i = 0; i < PERF_RECORD_HEADER_MAX; ++i) { const char *name; name = perf_event__name(i); if (!strcmp(name, "UNKNOWN")) continue; if (skip_empty && !stats->nr_events[i]) continue; if (i && total) { ret += fprintf(fp, "%16s events: %10d (%4.1f%%)\n", name, stats->nr_events[i], 100.0 * stats->nr_events[i] / total); } else { ret += fprintf(fp, "%16s events: %10d\n", name, stats->nr_events[i]); } } return ret; }