/* * Copyright 2015 Free Electrons * Copyright 2015 NextThing Co * * Maxime Ripard <maxime.ripard@free-electrons.com> * * This file is dual-licensed: you can use it either under the terms * of the GPL or the X11 license, at your option. Note that this dual * licensing only applies to this file, and not this project as a * whole. * * a) This file is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Or, alternatively, * * b) Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /dts-v1/; #include "sun5i-r8.dtsi" #include "sunxi-common-regulators.dtsi" #include <dt-bindings/gpio/gpio.h> #include <dt-bindings/interrupt-controller/irq.h> / { model = "NextThing C.H.I.P."; compatible = "nextthing,chip", "allwinner,sun5i-r8", "allwinner,sun5i-a13"; aliases { i2c0 = &i2c0; i2c1 = &i2c1; i2c2 = &i2c2; serial0 = &uart1; serial1 = &uart3; spi0 = &spi2; }; chosen { stdout-path = "serial0:115200n8"; }; leds { compatible = "gpio-leds"; led-0 { label = "chip:white:status"; gpios = <&axp_gpio 2 GPIO_ACTIVE_HIGH>; default-state = "on"; }; }; mmc0_pwrseq: mmc0_pwrseq { compatible = "mmc-pwrseq-simple"; reset-gpios = <&pio 2 19 GPIO_ACTIVE_LOW>; /* PC19 */ }; onewire { compatible = "w1-gpio"; gpios = <&pio 3 2 (GPIO_ACTIVE_HIGH | GPIO_PULL_UP)>; /* PD2 */ }; }; &be0 { status = "okay"; }; &codec { status = "okay"; }; &cpu0 { cpu-supply = <®_dcdc2>; }; &ehci0 { status = "okay"; }; &i2c0 { status = "okay"; axp209: pmic@34 { reg = <0x34>; /* * The interrupt is routed through the "External Fast * Interrupt Request" pin (ball G13 of the module) * directly to the main interrupt controller, without * any other controller interfering. */ interrupts = <0>; }; }; #include "axp209.dtsi" &ac_power_supply { status = "okay"; }; &battery_power_supply { status = "okay"; }; &i2c1 { status = "disabled"; }; &i2c2 { status = "okay"; xio: gpio@38 { compatible = "nxp,pcf8574a"; reg = <0x38>; gpio-controller; #gpio-cells = <2>; interrupt-parent = <&pio>; interrupts = <6 0 IRQ_TYPE_EDGE_FALLING>; interrupt-controller; #interrupt-cells = <2>; }; }; &mmc0_pins { bias-pull-up; }; &mmc0 { vmmc-supply = <®_vcc3v3>; mmc-pwrseq = <&mmc0_pwrseq>; bus-width = <4>; non-removable; status = "okay"; }; &ohci0 { status = "okay"; }; &otg_sram { status = "okay"; }; ®_dcdc2 { regulator-min-microvolt = <1000000>; regulator-max-microvolt = <1400000>; regulator-name = "cpuvdd"; regulator-always-on; }; ®_dcdc3 { regulator-min-microvolt = <1000000>; regulator-max-microvolt = <1300000>; regulator-name = "corevdd"; regulator-always-on; }; ®_ldo1 { regulator-name = "rtcvdd"; }; ®_ldo2 { regulator-min-microvolt = <2700000>; regulator-max-microvolt = <3300000>; regulator-name = "avcc"; regulator-always-on; }; /* * Both LDO3 and LDO4 are used in parallel to power up the WiFi/BT * Chip. * * If those are not enabled, the SDIO part will not enumerate, and * since there's no way currently to pass DT infos to an SDIO device, * we cannot really do better than this ugly hack for now. */ ®_ldo3 { regulator-min-microvolt = <3300000>; regulator-max-microvolt = <3300000>; regulator-name = "vcc-wifi-1"; regulator-always-on; }; ®_ldo4 { regulator-min-microvolt = <3300000>; regulator-max-microvolt = <3300000>; regulator-name = "vcc-wifi-2"; regulator-always-on; }; ®_ldo5 { regulator-min-microvolt = <1800000>; regulator-max-microvolt = <1800000>; regulator-name = "vcc-1v8"; }; ®_usb0_vbus { vin-supply = <®_vcc5v0>; gpio = <&pio 1 10 GPIO_ACTIVE_HIGH>; /* PB10 */ status = "okay"; }; &spi2 { pinctrl-names = "default"; pinctrl-0 = <&spi2_pe_pins>; status = "disabled"; }; &tcon0 { status = "okay"; }; &tve0 { status = "okay"; }; &uart1 { pinctrl-names = "default"; pinctrl-0 = <&uart1_pg_pins>; status = "okay"; }; &uart3 { pinctrl-names = "default"; pinctrl-0 = <&uart3_pg_pins>, <&uart3_cts_rts_pg_pins>; status = "okay"; bluetooth { compatible = "realtek,rtl8723bs-bt"; device-wake-gpios = <&axp_gpio 3 GPIO_ACTIVE_HIGH>; host-wake-gpios = <&pio 1 3 GPIO_ACTIVE_HIGH>; /* PB3 */ }; }; &usb_otg { dr_mode = "otg"; status = "okay"; }; &usb_power_supply { status = "okay"; }; &usbphy { status = "okay"; usb0_id_det-gpios = <&pio 6 2 GPIO_ACTIVE_HIGH>; /* PG2 */ usb0_vbus_power-supply = <&usb_power_supply>; usb0_vbus-supply = <®_usb0_vbus>; usb1_vbus-supply = <®_vcc5v0>; };