// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.

#include <linux/etherdevice.h>
#include <linux/iopoll.h>
#include <net/rtnetlink.h>
#include "hclgevf_cmd.h"
#include "hclgevf_main.h"
#include "hclge_mbx.h"
#include "hnae3.h"

#define HCLGEVF_NAME	"hclgevf"

#define HCLGEVF_RESET_MAX_FAIL_CNT	5

static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
static struct hnae3_ae_algo ae_algovf;

static const struct pci_device_id ae_algovf_pci_tbl[] = {
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
	/* required last entry */
	{0, }
};

static const u8 hclgevf_hash_key[] = {
	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
};

MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);

static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
					 HCLGEVF_CMDQ_TX_DEPTH_REG,
					 HCLGEVF_CMDQ_TX_TAIL_REG,
					 HCLGEVF_CMDQ_TX_HEAD_REG,
					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
					 HCLGEVF_CMDQ_RX_DEPTH_REG,
					 HCLGEVF_CMDQ_RX_TAIL_REG,
					 HCLGEVF_CMDQ_RX_HEAD_REG,
					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
					 HCLGEVF_CMDQ_INTR_STS_REG,
					 HCLGEVF_CMDQ_INTR_EN_REG,
					 HCLGEVF_CMDQ_INTR_GEN_REG};

static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
					   HCLGEVF_RST_ING,
					   HCLGEVF_GRO_EN_REG};

static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
					 HCLGEVF_RING_RX_ADDR_H_REG,
					 HCLGEVF_RING_RX_BD_NUM_REG,
					 HCLGEVF_RING_RX_BD_LENGTH_REG,
					 HCLGEVF_RING_RX_MERGE_EN_REG,
					 HCLGEVF_RING_RX_TAIL_REG,
					 HCLGEVF_RING_RX_HEAD_REG,
					 HCLGEVF_RING_RX_FBD_NUM_REG,
					 HCLGEVF_RING_RX_OFFSET_REG,
					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
					 HCLGEVF_RING_RX_STASH_REG,
					 HCLGEVF_RING_RX_BD_ERR_REG,
					 HCLGEVF_RING_TX_ADDR_L_REG,
					 HCLGEVF_RING_TX_ADDR_H_REG,
					 HCLGEVF_RING_TX_BD_NUM_REG,
					 HCLGEVF_RING_TX_PRIORITY_REG,
					 HCLGEVF_RING_TX_TC_REG,
					 HCLGEVF_RING_TX_MERGE_EN_REG,
					 HCLGEVF_RING_TX_TAIL_REG,
					 HCLGEVF_RING_TX_HEAD_REG,
					 HCLGEVF_RING_TX_FBD_NUM_REG,
					 HCLGEVF_RING_TX_OFFSET_REG,
					 HCLGEVF_RING_TX_EBD_NUM_REG,
					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
					 HCLGEVF_RING_TX_BD_ERR_REG,
					 HCLGEVF_RING_EN_REG};

static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
					     HCLGEVF_TQP_INTR_GL0_REG,
					     HCLGEVF_TQP_INTR_GL1_REG,
					     HCLGEVF_TQP_INTR_GL2_REG,
					     HCLGEVF_TQP_INTR_RL_REG};

static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
{
	if (!handle->client)
		return container_of(handle, struct hclgevf_dev, nic);
	else if (handle->client->type == HNAE3_CLIENT_ROCE)
		return container_of(handle, struct hclgevf_dev, roce);
	else
		return container_of(handle, struct hclgevf_dev, nic);
}

static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_desc desc;
	struct hclgevf_tqp *tqp;
	int status;
	int i;

	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_QUERY_RX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status,	i);
			return status;
		}
		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
			le32_to_cpu(desc.data[1]);

		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status, i);
			return status;
		}
		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
			le32_to_cpu(desc.data[1]);
	}

	return 0;
}

static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_tqp *tqp;
	u64 *buff = data;
	int i;

	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
	}
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
	}

	return buff;
}

static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;

	return kinfo->num_tqps * 2;
}

static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	u8 *buff = data;
	int i = 0;

	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

	return buff;
}

static void hclgevf_update_stats(struct hnae3_handle *handle,
				 struct net_device_stats *net_stats)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int status;

	status = hclgevf_tqps_update_stats(handle);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF update of TQPS stats fail, status = %d.\n",
			status);
}

static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
{
	if (strset == ETH_SS_TEST)
		return -EOPNOTSUPP;
	else if (strset == ETH_SS_STATS)
		return hclgevf_tqps_get_sset_count(handle, strset);

	return 0;
}

static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
				u8 *data)
{
	u8 *p = (char *)data;

	if (strset == ETH_SS_STATS)
		p = hclgevf_tqps_get_strings(handle, p);
}

static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
{
	hclgevf_tqps_get_stats(handle, data);
}

static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
{
	u8 resp_msg;
	int status;

	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
				      true, &resp_msg, sizeof(resp_msg));
	if (status) {
		dev_err(&hdev->pdev->dev,
			"VF request to get TC info from PF failed %d",
			status);
		return status;
	}

	hdev->hw_tc_map = resp_msg;

	return 0;
}

static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	u8 resp_msg;
	int ret;

	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
				   NULL, 0, true, &resp_msg, sizeof(u8));
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get port based vlan state failed %d",
			ret);
		return ret;
	}

	nic->port_base_vlan_state = resp_msg;

	return 0;
}

static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
{
#define HCLGEVF_TQPS_RSS_INFO_LEN	6
	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
	int status;

	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
				      true, resp_msg,
				      HCLGEVF_TQPS_RSS_INFO_LEN);
	if (status) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp info from PF failed %d",
			status);
		return status;
	}

	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));

	return 0;
}

static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
{
#define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
	int ret;

	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
				   true, resp_msg,
				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp depth info from PF failed %d",
			ret);
		return ret;
	}

	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));

	return 0;
}

static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 msg_data[2], resp_data[2];
	u16 qid_in_pf = 0;
	int ret;

	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));

	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
				   sizeof(msg_data), true, resp_data,
				   sizeof(resp_data));
	if (!ret)
		qid_in_pf = *(u16 *)resp_data;

	return qid_in_pf;
}

static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
{
	u8 resp_msg[2];
	int ret;

	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
				   true, resp_msg, sizeof(resp_msg));
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get the pf port media type failed %d",
			ret);
		return ret;
	}

	hdev->hw.mac.media_type = resp_msg[0];
	hdev->hw.mac.module_type = resp_msg[1];

	return 0;
}

static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
{
	struct hclgevf_tqp *tqp;
	int i;

	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
	if (!hdev->htqp)
		return -ENOMEM;

	tqp = hdev->htqp;

	for (i = 0; i < hdev->num_tqps; i++) {
		tqp->dev = &hdev->pdev->dev;
		tqp->index = i;

		tqp->q.ae_algo = &ae_algovf;
		tqp->q.buf_size = hdev->rx_buf_len;
		tqp->q.tx_desc_num = hdev->num_tx_desc;
		tqp->q.rx_desc_num = hdev->num_rx_desc;
		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
			i * HCLGEVF_TQP_REG_SIZE;

		tqp++;
	}

	return 0;
}

static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo;
	u16 new_tqps = hdev->num_tqps;
	unsigned int i;

	kinfo = &nic->kinfo;
	kinfo->num_tc = 0;
	kinfo->num_tx_desc = hdev->num_tx_desc;
	kinfo->num_rx_desc = hdev->num_rx_desc;
	kinfo->rx_buf_len = hdev->rx_buf_len;
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
		if (hdev->hw_tc_map & BIT(i))
			kinfo->num_tc++;

	kinfo->rss_size
		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
	new_tqps = kinfo->rss_size * kinfo->num_tc;
	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);

	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
				  sizeof(struct hnae3_queue *), GFP_KERNEL);
	if (!kinfo->tqp)
		return -ENOMEM;

	for (i = 0; i < kinfo->num_tqps; i++) {
		hdev->htqp[i].q.handle = &hdev->nic;
		hdev->htqp[i].q.tqp_index = i;
		kinfo->tqp[i] = &hdev->htqp[i].q;
	}

	return 0;
}

static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
{
	int status;
	u8 resp_msg;

	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
				      0, false, &resp_msg, sizeof(resp_msg));
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed to fetch link status(%d) from PF", status);
}

void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
{
	struct hnae3_handle *rhandle = &hdev->roce;
	struct hnae3_handle *handle = &hdev->nic;
	struct hnae3_client *rclient;
	struct hnae3_client *client;

	client = handle->client;
	rclient = hdev->roce_client;

	link_state =
		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;

	if (link_state != hdev->hw.mac.link) {
		client->ops->link_status_change(handle, !!link_state);
		if (rclient && rclient->ops->link_status_change)
			rclient->ops->link_status_change(rhandle, !!link_state);
		hdev->hw.mac.link = link_state;
	}
}

static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
{
#define HCLGEVF_ADVERTISING 0
#define HCLGEVF_SUPPORTED   1
	u8 send_msg;
	u8 resp_msg;

	send_msg = HCLGEVF_ADVERTISING;
	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
			     &send_msg, sizeof(send_msg), false,
			     &resp_msg, sizeof(resp_msg));
	send_msg = HCLGEVF_SUPPORTED;
	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
			     &send_msg, sizeof(send_msg), false,
			     &resp_msg, sizeof(resp_msg));
}

static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	int ret;

	nic->ae_algo = &ae_algovf;
	nic->pdev = hdev->pdev;
	nic->numa_node_mask = hdev->numa_node_mask;
	nic->flags |= HNAE3_SUPPORT_VF;

	ret = hclgevf_knic_setup(hdev);
	if (ret)
		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
			ret);
	return ret;
}

static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
{
	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
		dev_warn(&hdev->pdev->dev,
			 "vector(vector_id %d) has been freed.\n", vector_id);
		return;
	}

	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
	hdev->num_msi_left += 1;
	hdev->num_msi_used -= 1;
}

static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
			      struct hnae3_vector_info *vector_info)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_vector_info *vector = vector_info;
	int alloc = 0;
	int i, j;

	vector_num = min(hdev->num_msi_left, vector_num);

	for (j = 0; j < vector_num; j++) {
		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
				vector->vector = pci_irq_vector(hdev->pdev, i);
				vector->io_addr = hdev->hw.io_base +
					HCLGEVF_VECTOR_REG_BASE +
					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
				hdev->vector_status[i] = 0;
				hdev->vector_irq[i] = vector->vector;

				vector++;
				alloc++;

				break;
			}
		}
	}
	hdev->num_msi_left -= alloc;
	hdev->num_msi_used += alloc;

	return alloc;
}

static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
{
	int i;

	for (i = 0; i < hdev->num_msi; i++)
		if (vector == hdev->vector_irq[i])
			return i;

	return -EINVAL;
}

static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
				    const u8 hfunc, const u8 *key)
{
	struct hclgevf_rss_config_cmd *req;
	unsigned int key_offset = 0;
	struct hclgevf_desc desc;
	int key_counts;
	int key_size;
	int ret;

	key_counts = HCLGEVF_RSS_KEY_SIZE;
	req = (struct hclgevf_rss_config_cmd *)desc.data;

	while (key_counts) {
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
					     false);

		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
		req->hash_config |=
			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);

		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
		memcpy(req->hash_key,
		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);

		key_counts -= key_size;
		key_offset++;
		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"Configure RSS config fail, status = %d\n",
				ret);
			return ret;
		}
	}

	return 0;
}

static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
{
	return HCLGEVF_RSS_KEY_SIZE;
}

static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
{
	return HCLGEVF_RSS_IND_TBL_SIZE;
}

static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
{
	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
	struct hclgevf_rss_indirection_table_cmd *req;
	struct hclgevf_desc desc;
	int status;
	int i, j;

	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;

	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
					     false);
		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
			req->rss_result[j] =
				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];

		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"VF failed(=%d) to set RSS indirection table\n",
				status);
			return status;
		}
	}

	return 0;
}

static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
{
	struct hclgevf_rss_tc_mode_cmd *req;
	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
	u16 tc_size[HCLGEVF_MAX_TC_NUM];
	struct hclgevf_desc desc;
	u16 roundup_size;
	int status;
	unsigned int i;

	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;

	roundup_size = roundup_pow_of_two(rss_size);
	roundup_size = ilog2(roundup_size);

	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
		tc_size[i] = roundup_size;
		tc_offset[i] = rss_size * i;
	}

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
			      (tc_valid[i] & 0x1));
		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
	}
	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed(=%d) to set rss tc mode\n", status);

	return status;
}

/* for revision 0x20, vf shared the same rss config with pf */
static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
{
#define HCLGEVF_RSS_MBX_RESP_LEN	8

	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
	u16 msg_num, hash_key_index;
	u8 index;
	int ret;

	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
			HCLGEVF_RSS_MBX_RESP_LEN;
	for (index = 0; index < msg_num; index++) {
		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
					   &index, sizeof(index),
					   true, resp_msg,
					   HCLGEVF_RSS_MBX_RESP_LEN);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"VF get rss hash key from PF failed, ret=%d",
				ret);
			return ret;
		}

		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
		if (index == msg_num - 1)
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0],
			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
		else
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
	}

	return 0;
}

static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
			   u8 *hfunc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	int i, ret;

	if (handle->pdev->revision >= 0x21) {
		/* Get hash algorithm */
		if (hfunc) {
			switch (rss_cfg->hash_algo) {
			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
				*hfunc = ETH_RSS_HASH_TOP;
				break;
			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
				*hfunc = ETH_RSS_HASH_XOR;
				break;
			default:
				*hfunc = ETH_RSS_HASH_UNKNOWN;
				break;
			}
		}

		/* Get the RSS Key required by the user */
		if (key)
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
	} else {
		if (hfunc)
			*hfunc = ETH_RSS_HASH_TOP;
		if (key) {
			ret = hclgevf_get_rss_hash_key(hdev);
			if (ret)
				return ret;
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
	}

	if (indir)
		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
			indir[i] = rss_cfg->rss_indirection_tbl[i];

	return 0;
}

static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
			   const  u8 *key, const  u8 hfunc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	int ret, i;

	if (handle->pdev->revision >= 0x21) {
		/* Set the RSS Hash Key if specififed by the user */
		if (key) {
			switch (hfunc) {
			case ETH_RSS_HASH_TOP:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
				break;
			case ETH_RSS_HASH_XOR:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
				break;
			case ETH_RSS_HASH_NO_CHANGE:
				break;
			default:
				return -EINVAL;
			}

			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
						       key);
			if (ret)
				return ret;

			/* Update the shadow RSS key with user specified qids */
			memcpy(rss_cfg->rss_hash_key, key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
	}

	/* update the shadow RSS table with user specified qids */
	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
		rss_cfg->rss_indirection_tbl[i] = indir[i];

	/* update the hardware */
	return hclgevf_set_rss_indir_table(hdev);
}

static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
{
	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;

	if (nfc->data & RXH_L4_B_2_3)
		hash_sets |= HCLGEVF_D_PORT_BIT;
	else
		hash_sets &= ~HCLGEVF_D_PORT_BIT;

	if (nfc->data & RXH_IP_SRC)
		hash_sets |= HCLGEVF_S_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_S_IP_BIT;

	if (nfc->data & RXH_IP_DST)
		hash_sets |= HCLGEVF_D_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_D_IP_BIT;

	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
		hash_sets |= HCLGEVF_V_TAG_BIT;

	return hash_sets;
}

static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	u8 tuple_sets;
	int ret;

	if (handle->pdev->revision == 0x20)
		return -EOPNOTSUPP;

	if (nfc->data &
	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
		return -EINVAL;

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
	switch (nfc->flow_type) {
	case TCP_V4_FLOW:
		req->ipv4_tcp_en = tuple_sets;
		break;
	case TCP_V6_FLOW:
		req->ipv6_tcp_en = tuple_sets;
		break;
	case UDP_V4_FLOW:
		req->ipv4_udp_en = tuple_sets;
		break;
	case UDP_V6_FLOW:
		req->ipv6_udp_en = tuple_sets;
		break;
	case SCTP_V4_FLOW:
		req->ipv4_sctp_en = tuple_sets;
		break;
	case SCTP_V6_FLOW:
		if ((nfc->data & RXH_L4_B_0_1) ||
		    (nfc->data & RXH_L4_B_2_3))
			return -EINVAL;

		req->ipv6_sctp_en = tuple_sets;
		break;
	case IPV4_FLOW:
		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	case IPV6_FLOW:
		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	default:
		return -EINVAL;
	}

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Set rss tuple fail, status = %d\n", ret);
		return ret;
	}

	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
	return 0;
}

static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	u8 tuple_sets;

	if (handle->pdev->revision == 0x20)
		return -EOPNOTSUPP;

	nfc->data = 0;

	switch (nfc->flow_type) {
	case TCP_V4_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
		break;
	case UDP_V4_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
		break;
	case TCP_V6_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
		break;
	case UDP_V6_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
		break;
	case SCTP_V4_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
		break;
	case SCTP_V6_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
		break;
	case IPV4_FLOW:
	case IPV6_FLOW:
		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
		break;
	default:
		return -EINVAL;
	}

	if (!tuple_sets)
		return 0;

	if (tuple_sets & HCLGEVF_D_PORT_BIT)
		nfc->data |= RXH_L4_B_2_3;
	if (tuple_sets & HCLGEVF_S_PORT_BIT)
		nfc->data |= RXH_L4_B_0_1;
	if (tuple_sets & HCLGEVF_D_IP_BIT)
		nfc->data |= RXH_IP_DST;
	if (tuple_sets & HCLGEVF_S_IP_BIT)
		nfc->data |= RXH_IP_SRC;

	return 0;
}

static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
				       struct hclgevf_rss_cfg *rss_cfg)
{
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"Configure rss input fail, status = %d\n", ret);
	return ret;
}

static int hclgevf_get_tc_size(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;

	return rss_cfg->rss_size;
}

static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
				       int vector_id,
				       struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_ring_chain_node *node;
	struct hclge_mbx_vf_to_pf_cmd *req;
	struct hclgevf_desc desc;
	int i = 0;
	int status;
	u8 type;

	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
	type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
		HCLGE_MBX_UNMAP_RING_TO_VECTOR;

	for (node = ring_chain; node; node = node->next) {
		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;

		if (i == 0) {
			hclgevf_cmd_setup_basic_desc(&desc,
						     HCLGEVF_OPC_MBX_VF_TO_PF,
						     false);
			req->msg[0] = type;
			req->msg[1] = vector_id;
		}

		req->msg[idx_offset] =
				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
		req->msg[idx_offset + 1] = node->tqp_index;
		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
							   HNAE3_RING_GL_IDX_M,
							   HNAE3_RING_GL_IDX_S);

		i++;
		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
		    !node->next) {
			req->msg[2] = i;

			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
			if (status) {
				dev_err(&hdev->pdev->dev,
					"Map TQP fail, status is %d.\n",
					status);
				return status;
			}
			i = 0;
			hclgevf_cmd_setup_basic_desc(&desc,
						     HCLGEVF_OPC_MBX_VF_TO_PF,
						     false);
			req->msg[0] = type;
			req->msg[1] = vector_id;
		}
	}

	return 0;
}

static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
				      struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
}

static int hclgevf_unmap_ring_from_vector(
				struct hnae3_handle *handle,
				int vector,
				struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret, vector_id;

	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
		return 0;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
	if (ret)
		dev_err(&handle->pdev->dev,
			"Unmap ring from vector fail. vector=%d, ret =%d\n",
			vector_id,
			ret);

	return ret;
}

static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"hclgevf_put_vector get vector index fail. ret =%d\n",
			vector_id);
		return vector_id;
	}

	hclgevf_free_vector(hdev, vector_id);

	return 0;
}

static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
					bool en_bc_pmc)
{
	struct hclge_mbx_vf_to_pf_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
	req->msg[1] = en_bc_pmc ? 1 : 0;

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"Set promisc mode fail, status is %d.\n", ret);

	return ret;
}

static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
{
	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
}

static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
			      int stream_id, bool enable)
{
	struct hclgevf_cfg_com_tqp_queue_cmd *req;
	struct hclgevf_desc desc;
	int status;

	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
				     false);
	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
	req->stream_id = cpu_to_le16(stream_id);
	if (enable)
		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;

	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"TQP enable fail, status =%d.\n", status);

	return status;
}

static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_tqp *tqp;
	int i;

	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
	}
}

static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	ether_addr_copy(p, hdev->hw.mac.mac_addr);
}

static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
				bool is_first)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
	u8 *new_mac_addr = (u8 *)p;
	u8 msg_data[ETH_ALEN * 2];
	u16 subcode;
	int status;

	ether_addr_copy(msg_data, new_mac_addr);
	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);

	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
			HCLGE_MBX_MAC_VLAN_UC_MODIFY;

	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
				      subcode, msg_data, sizeof(msg_data),
				      true, NULL, 0);
	if (!status)
		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);

	return status;
}

static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
				    HCLGE_MBX_MAC_VLAN_UC_ADD,
				    addr, ETH_ALEN, false, NULL, 0);
}

static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
				    addr, ETH_ALEN, false, NULL, 0);
}

static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
				    HCLGE_MBX_MAC_VLAN_MC_ADD,
				    addr, ETH_ALEN, false, NULL, 0);
}

static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
				    addr, ETH_ALEN, false, NULL, 0);
}

static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
				   __be16 proto, u16 vlan_id,
				   bool is_kill)
{
#define HCLGEVF_VLAN_MBX_MSG_LEN 5
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
	int ret;

	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
		return -EINVAL;

	if (proto != htons(ETH_P_8021Q))
		return -EPROTONOSUPPORT;

	/* When device is resetting, firmware is unable to handle
	 * mailbox. Just record the vlan id, and remove it after
	 * reset finished.
	 */
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
		return -EBUSY;
	}

	msg_data[0] = is_kill;
	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
	memcpy(&msg_data[3], &proto, sizeof(proto));
	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
				   HCLGE_MBX_VLAN_FILTER, msg_data,
				   HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);

	/* When remove hw vlan filter failed, record the vlan id,
	 * and try to remove it from hw later, to be consistence
	 * with stack.
	 */
	if (is_kill && ret)
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);

	return ret;
}

static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MAX_SYNC_COUNT	60
	struct hnae3_handle *handle = &hdev->nic;
	int ret, sync_cnt = 0;
	u16 vlan_id;

	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	while (vlan_id != VLAN_N_VID) {
		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
					      vlan_id, true);
		if (ret)
			return;

		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
		sync_cnt++;
		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
			return;

		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	}
}

static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 msg_data;

	msg_data = enable ? 1 : 0;
	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
				    1, false, NULL, 0);
}

static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 msg_data[2];
	int ret;

	memcpy(msg_data, &queue_id, sizeof(queue_id));

	/* disable vf queue before send queue reset msg to PF */
	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
	if (ret)
		return ret;

	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
				    sizeof(msg_data), true, NULL, 0);
}

static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
				    sizeof(new_mtu), true, NULL, 0);
}

static int hclgevf_notify_client(struct hclgevf_dev *hdev,
				 enum hnae3_reset_notify_type type)
{
	struct hnae3_client *client = hdev->nic_client;
	struct hnae3_handle *handle = &hdev->nic;
	int ret;

	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
	    !client)
		return 0;

	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
			type, ret);

	return ret;
}

static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
}

static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
				    unsigned long delay_us,
				    unsigned long wait_cnt)
{
	unsigned long cnt = 0;

	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
	       cnt++ < wait_cnt)
		usleep_range(delay_us, delay_us * 2);

	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
		dev_err(&hdev->pdev->dev,
			"flr wait timeout\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
{
#define HCLGEVF_RESET_WAIT_US	20000
#define HCLGEVF_RESET_WAIT_CNT	2000
#define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)

	u32 val;
	int ret;

	/* wait to check the hardware reset completion status */
	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);

	if (hdev->reset_type == HNAE3_FLR_RESET)
		return hclgevf_flr_poll_timeout(hdev,
						HCLGEVF_RESET_WAIT_US,
						HCLGEVF_RESET_WAIT_CNT);

	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
				 !(val & HCLGEVF_RST_ING_BITS),
				 HCLGEVF_RESET_WAIT_US,
				 HCLGEVF_RESET_WAIT_TIMEOUT_US);

	/* hardware completion status should be available by this time */
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"could'nt get reset done status from h/w, timeout!\n");
		return ret;
	}

	/* we will wait a bit more to let reset of the stack to complete. This
	 * might happen in case reset assertion was made by PF. Yes, this also
	 * means we might end up waiting bit more even for VF reset.
	 */
	msleep(5000);

	return 0;
}

static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
{
	int ret;

	/* uninitialize the nic client */
	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;

	/* re-initialize the hclge device */
	ret = hclgevf_reset_hdev(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"hclge device re-init failed, VF is disabled!\n");
		return ret;
	}

	/* bring up the nic client again */
	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
	if (ret)
		return ret;

	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
}

static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
{
#define HCLGEVF_RESET_SYNC_TIME 100

	int ret = 0;

	switch (hdev->reset_type) {
	case HNAE3_VF_FUNC_RESET:
		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
					   0, true, NULL, sizeof(u8));
		hdev->rst_stats.vf_func_rst_cnt++;
		break;
	case HNAE3_FLR_RESET:
		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
		hdev->rst_stats.flr_rst_cnt++;
		break;
	default:
		break;
	}

	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
	/* inform hardware that preparatory work is done */
	msleep(HCLGEVF_RESET_SYNC_TIME);
	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
			  HCLGEVF_NIC_CMQ_ENABLE);
	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
		 hdev->reset_type, ret);

	return ret;
}

static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
{
	hdev->rst_stats.rst_fail_cnt++;
	dev_err(&hdev->pdev->dev, "failed to reset VF(%d)\n",
		hdev->rst_stats.rst_fail_cnt);

	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
		set_bit(hdev->reset_type, &hdev->reset_pending);

	if (hclgevf_is_reset_pending(hdev)) {
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		hclgevf_reset_task_schedule(hdev);
	} else {
		hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
				  HCLGEVF_NIC_CMQ_ENABLE);
	}
}

static int hclgevf_reset(struct hclgevf_dev *hdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	int ret;

	/* Initialize ae_dev reset status as well, in case enet layer wants to
	 * know if device is undergoing reset
	 */
	ae_dev->reset_type = hdev->reset_type;
	hdev->rst_stats.rst_cnt++;
	rtnl_lock();

	/* bring down the nic to stop any ongoing TX/RX */
	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
	if (ret)
		goto err_reset_lock;

	rtnl_unlock();

	ret = hclgevf_reset_prepare_wait(hdev);
	if (ret)
		goto err_reset;

	/* check if VF could successfully fetch the hardware reset completion
	 * status from the hardware
	 */
	ret = hclgevf_reset_wait(hdev);
	if (ret) {
		/* can't do much in this situation, will disable VF */
		dev_err(&hdev->pdev->dev,
			"VF failed(=%d) to fetch H/W reset completion status\n",
			ret);
		goto err_reset;
	}

	hdev->rst_stats.hw_rst_done_cnt++;

	rtnl_lock();

	/* now, re-initialize the nic client and ae device*/
	ret = hclgevf_reset_stack(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
		goto err_reset_lock;
	}

	/* bring up the nic to enable TX/RX again */
	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
	if (ret)
		goto err_reset_lock;

	rtnl_unlock();

	hdev->last_reset_time = jiffies;
	ae_dev->reset_type = HNAE3_NONE_RESET;
	hdev->rst_stats.rst_done_cnt++;
	hdev->rst_stats.rst_fail_cnt = 0;

	return ret;
err_reset_lock:
	rtnl_unlock();
err_reset:
	hclgevf_reset_err_handle(hdev);

	return ret;
}

static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
						     unsigned long *addr)
{
	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;

	/* return the highest priority reset level amongst all */
	if (test_bit(HNAE3_VF_RESET, addr)) {
		rst_level = HNAE3_VF_RESET;
		clear_bit(HNAE3_VF_RESET, addr);
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
		rst_level = HNAE3_VF_FULL_RESET;
		clear_bit(HNAE3_VF_FULL_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_PF_FUNC_RESET;
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_FUNC_RESET;
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
		rst_level = HNAE3_FLR_RESET;
		clear_bit(HNAE3_FLR_RESET, addr);
	}

	return rst_level;
}

static void hclgevf_reset_event(struct pci_dev *pdev,
				struct hnae3_handle *handle)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
	struct hclgevf_dev *hdev = ae_dev->priv;

	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");

	if (hdev->default_reset_request)
		hdev->reset_level =
			hclgevf_get_reset_level(hdev,
						&hdev->default_reset_request);
	else
		hdev->reset_level = HNAE3_VF_FUNC_RESET;

	/* reset of this VF requested */
	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
	hclgevf_reset_task_schedule(hdev);

	hdev->last_reset_time = jiffies;
}

static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
					  enum hnae3_reset_type rst_type)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	set_bit(rst_type, &hdev->default_reset_request);
}

static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
{
#define HCLGEVF_FLR_WAIT_MS	100
#define HCLGEVF_FLR_WAIT_CNT	50
	struct hclgevf_dev *hdev = ae_dev->priv;
	int cnt = 0;

	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
	hclgevf_reset_event(hdev->pdev, NULL);

	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
		msleep(HCLGEVF_FLR_WAIT_MS);

	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
		dev_err(&hdev->pdev->dev,
			"flr wait down timeout: %d\n", cnt);
}

static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->fw_version;
}

static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
{
	struct hclgevf_misc_vector *vector = &hdev->misc_vector;

	vector->vector_irq = pci_irq_vector(hdev->pdev,
					    HCLGEVF_MISC_VECTOR_NUM);
	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
	/* vector status always valid for Vector 0 */
	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;

	hdev->num_msi_left -= 1;
	hdev->num_msi_used += 1;
}

void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
{
	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
	    !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
		schedule_work(&hdev->rst_service_task);
	}
}

void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
{
	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
		schedule_work(&hdev->mbx_service_task);
	}
}

static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
{
	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
		schedule_work(&hdev->service_task);
}

static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
{
	/* if we have any pending mailbox event then schedule the mbx task */
	if (hdev->mbx_event_pending)
		hclgevf_mbx_task_schedule(hdev);

	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
		hclgevf_reset_task_schedule(hdev);
}

static void hclgevf_service_timer(struct timer_list *t)
{
	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);

	mod_timer(&hdev->service_timer, jiffies +
		  HCLGEVF_GENERAL_TASK_INTERVAL * HZ);

	hdev->stats_timer++;
	hclgevf_task_schedule(hdev);
}

static void hclgevf_reset_service_task(struct work_struct *work)
{
	struct hclgevf_dev *hdev =
		container_of(work, struct hclgevf_dev, rst_service_task);
	int ret;

	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
		return;

	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);

	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
			       &hdev->reset_state)) {
		/* PF has initmated that it is about to reset the hardware.
		 * We now have to poll & check if hardware has actually
		 * completed the reset sequence. On hardware reset completion,
		 * VF needs to reset the client and ae device.
		 */
		hdev->reset_attempts = 0;

		hdev->last_reset_time = jiffies;
		while ((hdev->reset_type =
			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
		       != HNAE3_NONE_RESET) {
			ret = hclgevf_reset(hdev);
			if (ret)
				dev_err(&hdev->pdev->dev,
					"VF stack reset failed %d.\n", ret);
		}
	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
				      &hdev->reset_state)) {
		/* we could be here when either of below happens:
		 * 1. reset was initiated due to watchdog timeout caused by
		 *    a. IMP was earlier reset and our TX got choked down and
		 *       which resulted in watchdog reacting and inducing VF
		 *       reset. This also means our cmdq would be unreliable.
		 *    b. problem in TX due to other lower layer(example link
		 *       layer not functioning properly etc.)
		 * 2. VF reset might have been initiated due to some config
		 *    change.
		 *
		 * NOTE: Theres no clear way to detect above cases than to react
		 * to the response of PF for this reset request. PF will ack the
		 * 1b and 2. cases but we will not get any intimation about 1a
		 * from PF as cmdq would be in unreliable state i.e. mailbox
		 * communication between PF and VF would be broken.
		 */

		/* if we are never geting into pending state it means either:
		 * 1. PF is not receiving our request which could be due to IMP
		 *    reset
		 * 2. PF is screwed
		 * We cannot do much for 2. but to check first we can try reset
		 * our PCIe + stack and see if it alleviates the problem.
		 */
		if (hdev->reset_attempts > 3) {
			/* prepare for full reset of stack + pcie interface */
			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);

			/* "defer" schedule the reset task again */
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		} else {
			hdev->reset_attempts++;

			set_bit(hdev->reset_level, &hdev->reset_pending);
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		}
		hclgevf_reset_task_schedule(hdev);
	}

	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
}

static void hclgevf_mailbox_service_task(struct work_struct *work)
{
	struct hclgevf_dev *hdev;

	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);

	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
		return;

	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);

	hclgevf_mbx_async_handler(hdev);

	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
}

static void hclgevf_keep_alive_timer(struct timer_list *t)
{
	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);

	schedule_work(&hdev->keep_alive_task);
	mod_timer(&hdev->keep_alive_timer, jiffies +
		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
}

static void hclgevf_keep_alive_task(struct work_struct *work)
{
	struct hclgevf_dev *hdev;
	u8 respmsg;
	int ret;

	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);

	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
		return;

	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
				   0, false, &respmsg, sizeof(respmsg));
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF sends keep alive cmd failed(=%d)\n", ret);
}

static void hclgevf_service_task(struct work_struct *work)
{
	struct hnae3_handle *handle;
	struct hclgevf_dev *hdev;

	hdev = container_of(work, struct hclgevf_dev, service_task);
	handle = &hdev->nic;

	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
		hclgevf_tqps_update_stats(handle);
		hdev->stats_timer = 0;
	}

	/* request the link status from the PF. PF would be able to tell VF
	 * about such updates in future so we might remove this later
	 */
	hclgevf_request_link_info(hdev);

	hclgevf_update_link_mode(hdev);

	hclgevf_sync_vlan_filter(hdev);

	hclgevf_deferred_task_schedule(hdev);

	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
}

static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
{
	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
}

static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
						      u32 *clearval)
{
	u32 cmdq_src_reg, rst_ing_reg;

	/* fetch the events from their corresponding regs */
	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
					HCLGEVF_VECTOR0_CMDQ_SRC_REG);

	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
		dev_info(&hdev->pdev->dev,
			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
		*clearval = cmdq_src_reg;
		hdev->rst_stats.vf_rst_cnt++;
		return HCLGEVF_VECTOR0_EVENT_RST;
	}

	/* check for vector0 mailbox(=CMDQ RX) event source */
	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
		*clearval = cmdq_src_reg;
		return HCLGEVF_VECTOR0_EVENT_MBX;
	}

	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");

	return HCLGEVF_VECTOR0_EVENT_OTHER;
}

static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
{
	writel(en ? 1 : 0, vector->addr);
}

static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
{
	enum hclgevf_evt_cause event_cause;
	struct hclgevf_dev *hdev = data;
	u32 clearval;

	hclgevf_enable_vector(&hdev->misc_vector, false);
	event_cause = hclgevf_check_evt_cause(hdev, &clearval);

	switch (event_cause) {
	case HCLGEVF_VECTOR0_EVENT_RST:
		hclgevf_reset_task_schedule(hdev);
		break;
	case HCLGEVF_VECTOR0_EVENT_MBX:
		hclgevf_mbx_handler(hdev);
		break;
	default:
		break;
	}

	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
		hclgevf_clear_event_cause(hdev, clearval);
		hclgevf_enable_vector(&hdev->misc_vector, true);
	}

	return IRQ_HANDLED;
}

static int hclgevf_configure(struct hclgevf_dev *hdev)
{
	int ret;

	/* get current port based vlan state from PF */
	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
	if (ret)
		return ret;

	/* get queue configuration from PF */
	ret = hclgevf_get_queue_info(hdev);
	if (ret)
		return ret;

	/* get queue depth info from PF */
	ret = hclgevf_get_queue_depth(hdev);
	if (ret)
		return ret;

	ret = hclgevf_get_pf_media_type(hdev);
	if (ret)
		return ret;

	/* get tc configuration from PF */
	return hclgevf_get_tc_info(hdev);
}

static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
	struct hclgevf_dev *hdev;

	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
	if (!hdev)
		return -ENOMEM;

	hdev->pdev = pdev;
	hdev->ae_dev = ae_dev;
	ae_dev->priv = hdev;

	return 0;
}

static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *roce = &hdev->roce;
	struct hnae3_handle *nic = &hdev->nic;

	roce->rinfo.num_vectors = hdev->num_roce_msix;

	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
	    hdev->num_msi_left == 0)
		return -EINVAL;

	roce->rinfo.base_vector = hdev->roce_base_vector;

	roce->rinfo.netdev = nic->kinfo.netdev;
	roce->rinfo.roce_io_base = hdev->hw.io_base;

	roce->pdev = nic->pdev;
	roce->ae_algo = nic->ae_algo;
	roce->numa_node_mask = nic->numa_node_mask;

	return 0;
}

static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
{
	struct hclgevf_cfg_gro_status_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	if (!hnae3_dev_gro_supported(hdev))
		return 0;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
				     false);
	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;

	req->gro_en = cpu_to_le16(en ? 1 : 0);

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF GRO hardware config cmd failed, ret = %d.\n", ret);

	return ret;
}

static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
{
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	int i, ret;

	rss_cfg->rss_size = hdev->rss_size_max;

	if (hdev->pdev->revision >= 0x21) {
		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
		       HCLGEVF_RSS_KEY_SIZE);

		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
					       rss_cfg->rss_hash_key);
		if (ret)
			return ret;

		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		rss_cfg->rss_tuple_sets.ipv4_udp_en =
					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		rss_cfg->rss_tuple_sets.ipv6_udp_en =
					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
					HCLGEVF_RSS_INPUT_TUPLE_OTHER;

		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
		if (ret)
			return ret;

	}

	/* Initialize RSS indirect table */
	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;

	ret = hclgevf_set_rss_indir_table(hdev);
	if (ret)
		return ret;

	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
}

static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
{
	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
				       false);
}

static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (enable) {
		mod_timer(&hdev->service_timer, jiffies + HZ);
	} else {
		del_timer_sync(&hdev->service_timer);
		cancel_work_sync(&hdev->service_task);
		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
	}
}

static int hclgevf_ae_start(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	hclgevf_reset_tqp_stats(handle);

	hclgevf_request_link_info(hdev);

	hclgevf_update_link_mode(hdev);

	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);

	return 0;
}

static void hclgevf_ae_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int i;

	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);

	if (hdev->reset_type != HNAE3_VF_RESET)
		for (i = 0; i < handle->kinfo.num_tqps; i++)
			if (hclgevf_reset_tqp(handle, i))
				break;

	hclgevf_reset_tqp_stats(handle);
	hclgevf_update_link_status(hdev, 0);
}

static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 msg_data;

	msg_data = alive ? 1 : 0;
	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
				    0, &msg_data, 1, false, NULL, 0);
}

static int hclgevf_client_start(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret;

	ret = hclgevf_set_alive(handle, true);
	if (ret)
		return ret;

	mod_timer(&hdev->keep_alive_timer, jiffies +
		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);

	return 0;
}

static void hclgevf_client_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret;

	ret = hclgevf_set_alive(handle, false);
	if (ret)
		dev_warn(&hdev->pdev->dev,
			 "%s failed %d\n", __func__, ret);

	del_timer_sync(&hdev->keep_alive_timer);
	cancel_work_sync(&hdev->keep_alive_task);
}

static void hclgevf_state_init(struct hclgevf_dev *hdev)
{
	/* setup tasks for the MBX */
	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);

	/* setup tasks for service timer */
	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);

	INIT_WORK(&hdev->service_task, hclgevf_service_task);
	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);

	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);

	mutex_init(&hdev->mbx_resp.mbx_mutex);

	/* bring the device down */
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
}

static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
{
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);

	if (hdev->keep_alive_timer.function)
		del_timer_sync(&hdev->keep_alive_timer);
	if (hdev->keep_alive_task.func)
		cancel_work_sync(&hdev->keep_alive_task);
	if (hdev->service_timer.function)
		del_timer_sync(&hdev->service_timer);
	if (hdev->service_task.func)
		cancel_work_sync(&hdev->service_task);
	if (hdev->mbx_service_task.func)
		cancel_work_sync(&hdev->mbx_service_task);
	if (hdev->rst_service_task.func)
		cancel_work_sync(&hdev->rst_service_task);

	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
}

static int hclgevf_init_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int vectors;
	int i;

	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
		vectors = pci_alloc_irq_vectors(pdev,
						hdev->roce_base_msix_offset + 1,
						hdev->num_msi,
						PCI_IRQ_MSIX);
	else
		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
						PCI_IRQ_MSI | PCI_IRQ_MSIX);

	if (vectors < 0) {
		dev_err(&pdev->dev,
			"failed(%d) to allocate MSI/MSI-X vectors\n",
			vectors);
		return vectors;
	}
	if (vectors < hdev->num_msi)
		dev_warn(&hdev->pdev->dev,
			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
			 hdev->num_msi, vectors);

	hdev->num_msi = vectors;
	hdev->num_msi_left = vectors;
	hdev->base_msi_vector = pdev->irq;
	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;

	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
					   sizeof(u16), GFP_KERNEL);
	if (!hdev->vector_status) {
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	for (i = 0; i < hdev->num_msi; i++)
		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;

	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
					sizeof(int), GFP_KERNEL);
	if (!hdev->vector_irq) {
		devm_kfree(&pdev->dev, hdev->vector_status);
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	return 0;
}

static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

	devm_kfree(&pdev->dev, hdev->vector_status);
	devm_kfree(&pdev->dev, hdev->vector_irq);
	pci_free_irq_vectors(pdev);
}

static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
{
	int ret = 0;

	hclgevf_get_misc_vector(hdev);

	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
			  0, "hclgevf_cmd", hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
			hdev->misc_vector.vector_irq);
		return ret;
	}

	hclgevf_clear_event_cause(hdev, 0);

	/* enable misc. vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, true);

	return ret;
}

static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
{
	/* disable misc vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, false);
	synchronize_irq(hdev->misc_vector.vector_irq);
	free_irq(hdev->misc_vector.vector_irq, hdev);
	hclgevf_free_vector(hdev, 0);
}

static void hclgevf_info_show(struct hclgevf_dev *hdev)
{
	struct device *dev = &hdev->pdev->dev;

	dev_info(dev, "VF info begin:\n");

	dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
	dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
	dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
	dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
	dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
	dev_info(dev, "PF media type of this VF: %d\n",
		 hdev->hw.mac.media_type);

	dev_info(dev, "VF info end.\n");
}

static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
					    struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	ret = client->ops->init_instance(&hdev->nic);
	if (ret)
		return ret;

	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
	hnae3_set_client_init_flag(client, ae_dev, 1);

	if (netif_msg_drv(&hdev->nic))
		hclgevf_info_show(hdev);

	return 0;
}

static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
					     struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
	    !hdev->nic_client)
		return 0;

	ret = hclgevf_init_roce_base_info(hdev);
	if (ret)
		return ret;

	ret = client->ops->init_instance(&hdev->roce);
	if (ret)
		return ret;

	hnae3_set_client_init_flag(client, ae_dev, 1);

	return 0;
}

static int hclgevf_init_client_instance(struct hnae3_client *client,
					struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	switch (client->type) {
	case HNAE3_CLIENT_KNIC:
		hdev->nic_client = client;
		hdev->nic.client = client;

		ret = hclgevf_init_nic_client_instance(ae_dev, client);
		if (ret)
			goto clear_nic;

		ret = hclgevf_init_roce_client_instance(ae_dev,
							hdev->roce_client);
		if (ret)
			goto clear_roce;

		break;
	case HNAE3_CLIENT_ROCE:
		if (hnae3_dev_roce_supported(hdev)) {
			hdev->roce_client = client;
			hdev->roce.client = client;
		}

		ret = hclgevf_init_roce_client_instance(ae_dev, client);
		if (ret)
			goto clear_roce;

		break;
	default:
		return -EINVAL;
	}

	return 0;

clear_nic:
	hdev->nic_client = NULL;
	hdev->nic.client = NULL;
	return ret;
clear_roce:
	hdev->roce_client = NULL;
	hdev->roce.client = NULL;
	return ret;
}

static void hclgevf_uninit_client_instance(struct hnae3_client *client,
					   struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	/* un-init roce, if it exists */
	if (hdev->roce_client) {
		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
		hdev->roce_client = NULL;
		hdev->roce.client = NULL;
	}

	/* un-init nic/unic, if this was not called by roce client */
	if (client->ops->uninit_instance && hdev->nic_client &&
	    client->type != HNAE3_CLIENT_ROCE) {
		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);

		client->ops->uninit_instance(&hdev->nic, 0);
		hdev->nic_client = NULL;
		hdev->nic.client = NULL;
	}
}

static int hclgevf_pci_init(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	struct hclgevf_hw *hw;
	int ret;

	ret = pci_enable_device(pdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to enable PCI device\n");
		return ret;
	}

	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
	if (ret) {
		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
		goto err_disable_device;
	}

	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
	if (ret) {
		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
		goto err_disable_device;
	}

	pci_set_master(pdev);
	hw = &hdev->hw;
	hw->hdev = hdev;
	hw->io_base = pci_iomap(pdev, 2, 0);
	if (!hw->io_base) {
		dev_err(&pdev->dev, "can't map configuration register space\n");
		ret = -ENOMEM;
		goto err_clr_master;
	}

	return 0;

err_clr_master:
	pci_clear_master(pdev);
	pci_release_regions(pdev);
err_disable_device:
	pci_disable_device(pdev);

	return ret;
}

static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

	pci_iounmap(pdev, hdev->hw.io_base);
	pci_clear_master(pdev);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
}

static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
{
	struct hclgevf_query_res_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"query vf resource failed, ret = %d.\n", ret);
		return ret;
	}

	req = (struct hclgevf_query_res_cmd *)desc.data;

	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
		hdev->roce_base_msix_offset =
		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
				HCLGEVF_MSIX_OFT_ROCEE_M,
				HCLGEVF_MSIX_OFT_ROCEE_S);
		hdev->num_roce_msix =
		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);

		/* VF should have NIC vectors and Roce vectors, NIC vectors
		 * are queued before Roce vectors. The offset is fixed to 64.
		 */
		hdev->num_msi = hdev->num_roce_msix +
				hdev->roce_base_msix_offset;
	} else {
		hdev->num_msi =
		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
	}

	return 0;
}

static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret = 0;

	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		pci_set_master(pdev);
		ret = hclgevf_init_msi(hdev);
		if (ret) {
			dev_err(&pdev->dev,
				"failed(%d) to init MSI/MSI-X\n", ret);
			return ret;
		}

		ret = hclgevf_misc_irq_init(hdev);
		if (ret) {
			hclgevf_uninit_msi(hdev);
			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
				ret);
			return ret;
		}

		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	return ret;
}

static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret;

	ret = hclgevf_pci_reset(hdev);
	if (ret) {
		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
		return ret;
	}

	ret = hclgevf_cmd_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "cmd failed %d\n", ret);
		return ret;
	}

	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		return ret;
	}

	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		return ret;

	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		return ret;
	}

	if (pdev->revision >= 0x21) {
		ret = hclgevf_set_promisc_mode(hdev, true);
		if (ret)
			return ret;
	}

	dev_info(&hdev->pdev->dev, "Reset done\n");

	return 0;
}

static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret;

	ret = hclgevf_pci_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "PCI initialization failed\n");
		return ret;
	}

	ret = hclgevf_cmd_queue_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
		goto err_cmd_queue_init;
	}

	ret = hclgevf_cmd_init(hdev);
	if (ret)
		goto err_cmd_init;

	/* Get vf resource */
	ret = hclgevf_query_vf_resource(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Query vf status error, ret = %d.\n", ret);
		goto err_cmd_init;
	}

	ret = hclgevf_init_msi(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
		goto err_cmd_init;
	}

	hclgevf_state_init(hdev);
	hdev->reset_level = HNAE3_VF_FUNC_RESET;

	ret = hclgevf_misc_irq_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
			ret);
		goto err_misc_irq_init;
	}

	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);

	ret = hclgevf_configure(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
		goto err_config;
	}

	ret = hclgevf_alloc_tqps(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
		goto err_config;
	}

	ret = hclgevf_set_handle_info(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
		goto err_config;
	}

	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		goto err_config;

	/* vf is not allowed to enable unicast/multicast promisc mode.
	 * For revision 0x20, default to disable broadcast promisc mode,
	 * firmware makes sure broadcast packets can be accepted.
	 * For revision 0x21, default to enable broadcast promisc mode.
	 */
	if (pdev->revision >= 0x21) {
		ret = hclgevf_set_promisc_mode(hdev, true);
		if (ret)
			goto err_config;
	}

	/* Initialize RSS for this VF */
	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		goto err_config;
	}

	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		goto err_config;
	}

	hdev->last_reset_time = jiffies;
	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);

	return 0;

err_config:
	hclgevf_misc_irq_uninit(hdev);
err_misc_irq_init:
	hclgevf_state_uninit(hdev);
	hclgevf_uninit_msi(hdev);
err_cmd_init:
	hclgevf_cmd_uninit(hdev);
err_cmd_queue_init:
	hclgevf_pci_uninit(hdev);
	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	return ret;
}

static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
{
	hclgevf_state_uninit(hdev);

	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
	}

	hclgevf_pci_uninit(hdev);
	hclgevf_cmd_uninit(hdev);
}

static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
	struct hclgevf_dev *hdev;
	int ret;

	ret = hclgevf_alloc_hdev(ae_dev);
	if (ret) {
		dev_err(&pdev->dev, "hclge device allocation failed\n");
		return ret;
	}

	ret = hclgevf_init_hdev(ae_dev->priv);
	if (ret) {
		dev_err(&pdev->dev, "hclge device initialization failed\n");
		return ret;
	}

	hdev = ae_dev->priv;
	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);

	return 0;
}

static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	hclgevf_uninit_hdev(hdev);
	ae_dev->priv = NULL;
}

static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo = &nic->kinfo;

	return min_t(u32, hdev->rss_size_max,
		     hdev->num_tqps / kinfo->num_tc);
}

/**
 * hclgevf_get_channels - Get the current channels enabled and max supported.
 * @handle: hardware information for network interface
 * @ch: ethtool channels structure
 *
 * We don't support separate tx and rx queues as channels. The other count
 * represents how many queues are being used for control. max_combined counts
 * how many queue pairs we can support. They may not be mapped 1 to 1 with
 * q_vectors since we support a lot more queue pairs than q_vectors.
 **/
static void hclgevf_get_channels(struct hnae3_handle *handle,
				 struct ethtool_channels *ch)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	ch->max_combined = hclgevf_get_max_channels(hdev);
	ch->other_count = 0;
	ch->max_other = 0;
	ch->combined_count = handle->kinfo.rss_size;
}

static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
					  u16 *alloc_tqps, u16 *max_rss_size)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	*alloc_tqps = hdev->num_tqps;
	*max_rss_size = hdev->rss_size_max;
}

static int hclgevf_get_status(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->hw.mac.link;
}

static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
					    u8 *auto_neg, u32 *speed,
					    u8 *duplex)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (speed)
		*speed = hdev->hw.mac.speed;
	if (duplex)
		*duplex = hdev->hw.mac.duplex;
	if (auto_neg)
		*auto_neg = AUTONEG_DISABLE;
}

void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
				 u8 duplex)
{
	hdev->hw.mac.speed = speed;
	hdev->hw.mac.duplex = duplex;
}

static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_config_gro(hdev, enable);
}

static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
				   u8 *module_type)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (media_type)
		*media_type = hdev->hw.mac.media_type;

	if (module_type)
		*module_type = hdev->hw.mac.module_type;
}

static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
}

static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
}

static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->rst_stats.hw_rst_done_cnt;
}

static void hclgevf_get_link_mode(struct hnae3_handle *handle,
				  unsigned long *supported,
				  unsigned long *advertising)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	*supported = hdev->hw.mac.supported;
	*advertising = hdev->hw.mac.advertising;
}

#define MAX_SEPARATE_NUM	4
#define SEPARATOR_VALUE		0xFFFFFFFF
#define REG_NUM_PER_LINE	4
#define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))

static int hclgevf_get_regs_len(struct hnae3_handle *handle)
{
	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;

	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
}

static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
			     void *data)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int i, j, reg_um, separator_num;
	u32 *reg = data;

	*version = hdev->fw_version;

	/* fetching per-VF registers values from VF PCIe register space */
	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_tqps; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  ring_reg_addr_list[i] +
						  0x200 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}

	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_msi_used - 1; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  tqp_intr_reg_addr_list[i] +
						  4 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}
}

void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
					u8 *port_base_vlan_info, u8 data_size)
{
	struct hnae3_handle *nic = &hdev->nic;

	rtnl_lock();
	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
	rtnl_unlock();

	/* send msg to PF and wait update port based vlan info */
	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
			     port_base_vlan_info, data_size,
			     false, NULL, 0);

	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
	else
		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;

	rtnl_lock();
	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
	rtnl_unlock();
}

static const struct hnae3_ae_ops hclgevf_ops = {
	.init_ae_dev = hclgevf_init_ae_dev,
	.uninit_ae_dev = hclgevf_uninit_ae_dev,
	.flr_prepare = hclgevf_flr_prepare,
	.flr_done = hclgevf_flr_done,
	.init_client_instance = hclgevf_init_client_instance,
	.uninit_client_instance = hclgevf_uninit_client_instance,
	.start = hclgevf_ae_start,
	.stop = hclgevf_ae_stop,
	.client_start = hclgevf_client_start,
	.client_stop = hclgevf_client_stop,
	.map_ring_to_vector = hclgevf_map_ring_to_vector,
	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
	.get_vector = hclgevf_get_vector,
	.put_vector = hclgevf_put_vector,
	.reset_queue = hclgevf_reset_tqp,
	.get_mac_addr = hclgevf_get_mac_addr,
	.set_mac_addr = hclgevf_set_mac_addr,
	.add_uc_addr = hclgevf_add_uc_addr,
	.rm_uc_addr = hclgevf_rm_uc_addr,
	.add_mc_addr = hclgevf_add_mc_addr,
	.rm_mc_addr = hclgevf_rm_mc_addr,
	.get_stats = hclgevf_get_stats,
	.update_stats = hclgevf_update_stats,
	.get_strings = hclgevf_get_strings,
	.get_sset_count = hclgevf_get_sset_count,
	.get_rss_key_size = hclgevf_get_rss_key_size,
	.get_rss_indir_size = hclgevf_get_rss_indir_size,
	.get_rss = hclgevf_get_rss,
	.set_rss = hclgevf_set_rss,
	.get_rss_tuple = hclgevf_get_rss_tuple,
	.set_rss_tuple = hclgevf_set_rss_tuple,
	.get_tc_size = hclgevf_get_tc_size,
	.get_fw_version = hclgevf_get_fw_version,
	.set_vlan_filter = hclgevf_set_vlan_filter,
	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
	.reset_event = hclgevf_reset_event,
	.set_default_reset_request = hclgevf_set_def_reset_request,
	.get_channels = hclgevf_get_channels,
	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
	.get_regs_len = hclgevf_get_regs_len,
	.get_regs = hclgevf_get_regs,
	.get_status = hclgevf_get_status,
	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
	.get_media_type = hclgevf_get_media_type,
	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
	.ae_dev_resetting = hclgevf_ae_dev_resetting,
	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
	.set_gro_en = hclgevf_gro_en,
	.set_mtu = hclgevf_set_mtu,
	.get_global_queue_id = hclgevf_get_qid_global,
	.set_timer_task = hclgevf_set_timer_task,
	.get_link_mode = hclgevf_get_link_mode,
};

static struct hnae3_ae_algo ae_algovf = {
	.ops = &hclgevf_ops,
	.pdev_id_table = ae_algovf_pci_tbl,
};

static int hclgevf_init(void)
{
	pr_info("%s is initializing\n", HCLGEVF_NAME);

	hnae3_register_ae_algo(&ae_algovf);

	return 0;
}

static void hclgevf_exit(void)
{
	hnae3_unregister_ae_algo(&ae_algovf);
}
module_init(hclgevf_init);
module_exit(hclgevf_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_DESCRIPTION("HCLGEVF Driver");
MODULE_VERSION(HCLGEVF_MOD_VERSION