// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * driver for Earthsoft PT1/PT2
 *
 * Copyright (C) 2009 HIRANO Takahito <hiranotaka@zng.info>
 *
 * based on pt1dvr - http://pt1dvr.sourceforge.jp/
 *	by Tomoaki Ishikawa <tomy@users.sourceforge.jp>
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/signal.h>
#include <linux/hrtimer.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/pci.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/ratelimit.h>
#include <linux/string.h>
#include <linux/i2c.h>

#include <media/dvbdev.h>
#include <media/dvb_demux.h>
#include <media/dmxdev.h>
#include <media/dvb_net.h>
#include <media/dvb_frontend.h>

#include "tc90522.h"
#include "qm1d1b0004.h"
#include "dvb-pll.h"

#define DRIVER_NAME "earth-pt1"

#define PT1_PAGE_SHIFT 12
#define PT1_PAGE_SIZE (1 << PT1_PAGE_SHIFT)
#define PT1_NR_UPACKETS 1024
#define PT1_NR_BUFS 511

struct pt1_buffer_page {
	__le32 upackets[PT1_NR_UPACKETS];
};

struct pt1_table_page {
	__le32 next_pfn;
	__le32 buf_pfns[PT1_NR_BUFS];
};

struct pt1_buffer {
	struct pt1_buffer_page *page;
	dma_addr_t addr;
};

struct pt1_table {
	struct pt1_table_page *page;
	dma_addr_t addr;
	struct pt1_buffer bufs[PT1_NR_BUFS];
};

enum pt1_fe_clk {
	PT1_FE_CLK_20MHZ,	/* PT1 */
	PT1_FE_CLK_25MHZ,	/* PT2 */
};

#define PT1_NR_ADAPS 4

struct pt1_adapter;

struct pt1 {
	struct pci_dev *pdev;
	void __iomem *regs;
	struct i2c_adapter i2c_adap;
	int i2c_running;
	struct pt1_adapter *adaps[PT1_NR_ADAPS];
	struct pt1_table *tables;
	struct task_struct *kthread;
	int table_index;
	int buf_index;

	struct mutex lock;
	int power;
	int reset;

	enum pt1_fe_clk fe_clk;
};

struct pt1_adapter {
	struct pt1 *pt1;
	int index;

	u8 *buf;
	int upacket_count;
	int packet_count;
	int st_count;

	struct dvb_adapter adap;
	struct dvb_demux demux;
	int users;
	struct dmxdev dmxdev;
	struct dvb_frontend *fe;
	struct i2c_client *demod_i2c_client;
	struct i2c_client *tuner_i2c_client;
	int (*orig_set_voltage)(struct dvb_frontend *fe,
				enum fe_sec_voltage voltage);
	int (*orig_sleep)(struct dvb_frontend *fe);
	int (*orig_init)(struct dvb_frontend *fe);

	enum fe_sec_voltage voltage;
	int sleep;
};

union pt1_tuner_config {
	struct qm1d1b0004_config qm1d1b0004;
	struct dvb_pll_config tda6651;
};

struct pt1_config {
	struct i2c_board_info demod_info;
	struct tc90522_config demod_cfg;

	struct i2c_board_info tuner_info;
	union pt1_tuner_config tuner_cfg;
};

static const struct pt1_config pt1_configs[PT1_NR_ADAPS] = {
	{
		.demod_info = {
			I2C_BOARD_INFO(TC90522_I2C_DEV_SAT, 0x1b),
		},
		.tuner_info = {
			I2C_BOARD_INFO("qm1d1b0004", 0x60),
		},
	},
	{
		.demod_info = {
			I2C_BOARD_INFO(TC90522_I2C_DEV_TER, 0x1a),
		},
		.tuner_info = {
			I2C_BOARD_INFO("tda665x_earthpt1", 0x61),
		},
	},
	{
		.demod_info = {
			I2C_BOARD_INFO(TC90522_I2C_DEV_SAT, 0x19),
		},
		.tuner_info = {
			I2C_BOARD_INFO("qm1d1b0004", 0x60),
		},
	},
	{
		.demod_info = {
			I2C_BOARD_INFO(TC90522_I2C_DEV_TER, 0x18),
		},
		.tuner_info = {
			I2C_BOARD_INFO("tda665x_earthpt1", 0x61),
		},
	},
};

static const u8 va1j5jf8007s_20mhz_configs[][2] = {
	{0x04, 0x02}, {0x0d, 0x55}, {0x11, 0x40}, {0x13, 0x80}, {0x17, 0x01},
	{0x1c, 0x0a}, {0x1d, 0xaa}, {0x1e, 0x20}, {0x1f, 0x88}, {0x51, 0xb0},
	{0x52, 0x89}, {0x53, 0xb3}, {0x5a, 0x2d}, {0x5b, 0xd3}, {0x85, 0x69},
	{0x87, 0x04}, {0x8e, 0x02}, {0xa3, 0xf7}, {0xa5, 0xc0},
};

static const u8 va1j5jf8007s_25mhz_configs[][2] = {
	{0x04, 0x02}, {0x11, 0x40}, {0x13, 0x80}, {0x17, 0x01}, {0x1c, 0x0a},
	{0x1d, 0xaa}, {0x1e, 0x20}, {0x1f, 0x88}, {0x51, 0xb0}, {0x52, 0x89},
	{0x53, 0xb3}, {0x5a, 0x2d}, {0x5b, 0xd3}, {0x85, 0x69}, {0x87, 0x04},
	{0x8e, 0x26}, {0xa3, 0xf7}, {0xa5, 0xc0},
};

static const u8 va1j5jf8007t_20mhz_configs[][2] = {
	{0x03, 0x90}, {0x14, 0x8f}, {0x1c, 0x2a}, {0x1d, 0xa8}, {0x1e, 0xa2},
	{0x22, 0x83}, {0x31, 0x0d}, {0x32, 0xe0}, {0x39, 0xd3}, {0x3a, 0x00},
	{0x3b, 0x11}, {0x3c, 0x3f},
	{0x5c, 0x40}, {0x5f, 0x80}, {0x75, 0x02}, {0x76, 0x4e}, {0x77, 0x03},
	{0xef, 0x01}
};

static const u8 va1j5jf8007t_25mhz_configs[][2] = {
	{0x03, 0x90}, {0x1c, 0x2a}, {0x1d, 0xa8}, {0x1e, 0xa2}, {0x22, 0x83},
	{0x3a, 0x04}, {0x3b, 0x11}, {0x3c, 0x3f}, {0x5c, 0x40}, {0x5f, 0x80},
	{0x75, 0x0a}, {0x76, 0x4c}, {0x77, 0x03}, {0xef, 0x01}
};

static int config_demod(struct i2c_client *cl, enum pt1_fe_clk clk)
{
	int ret;
	bool is_sat;
	const u8 (*cfg_data)[2];
	int i, len;

	is_sat = !strncmp(cl->name, TC90522_I2C_DEV_SAT,
			  strlen(TC90522_I2C_DEV_SAT));
	if (is_sat) {
		struct i2c_msg msg[2];
		u8 wbuf, rbuf;

		wbuf = 0x07;
		msg[0].addr = cl->addr;
		msg[0].flags = 0;
		msg[0].len = 1;
		msg[0].buf = &wbuf;

		msg[1].addr = cl->addr;
		msg[1].flags = I2C_M_RD;
		msg[1].len = 1;
		msg[1].buf = &rbuf;
		ret = i2c_transfer(cl->adapter, msg, 2);
		if (ret < 0)
			return ret;
		if (rbuf != 0x41)
			return -EIO;
	}

	/* frontend init */
	if (clk == PT1_FE_CLK_20MHZ) {
		if (is_sat) {
			cfg_data = va1j5jf8007s_20mhz_configs;
			len = ARRAY_SIZE(va1j5jf8007s_20mhz_configs);
		} else {
			cfg_data = va1j5jf8007t_20mhz_configs;
			len = ARRAY_SIZE(va1j5jf8007t_20mhz_configs);
		}
	} else {
		if (is_sat) {
			cfg_data = va1j5jf8007s_25mhz_configs;
			len = ARRAY_SIZE(va1j5jf8007s_25mhz_configs);
		} else {
			cfg_data = va1j5jf8007t_25mhz_configs;
			len = ARRAY_SIZE(va1j5jf8007t_25mhz_configs);
		}
	}

	for (i = 0; i < len; i++) {
		ret = i2c_master_send(cl, cfg_data[i], 2);
		if (ret < 0)
			return ret;
	}
	return 0;
}

/*
 * Init registers for (each pair of) terrestrial/satellite block in demod.
 * Note that resetting terr. block also resets its peer sat. block as well.
 * This function must be called before configuring any demod block
 * (before pt1_wakeup(), fe->ops.init()).
 */
static int pt1_demod_block_init(struct pt1 *pt1)
{
	struct i2c_client *cl;
	u8 buf[2] = {0x01, 0x80};
	int ret;
	int i;

	/* reset all terr. & sat. pairs first */
	for (i = 0; i < PT1_NR_ADAPS; i++) {
		cl = pt1->adaps[i]->demod_i2c_client;
		if (strncmp(cl->name, TC90522_I2C_DEV_TER,
			    strlen(TC90522_I2C_DEV_TER)))
			continue;

		ret = i2c_master_send(cl, buf, 2);
		if (ret < 0)
			return ret;
		usleep_range(30000, 50000);
	}

	for (i = 0; i < PT1_NR_ADAPS; i++) {
		cl = pt1->adaps[i]->demod_i2c_client;
		if (strncmp(cl->name, TC90522_I2C_DEV_SAT,
			    strlen(TC90522_I2C_DEV_SAT)))
			continue;

		ret = i2c_master_send(cl, buf, 2);
		if (ret < 0)
			return ret;
		usleep_range(30000, 50000);
	}
	return 0;
}

static void pt1_write_reg(struct pt1 *pt1, int reg, u32 data)
{
	writel(data, pt1->regs + reg * 4);
}

static u32 pt1_read_reg(struct pt1 *pt1, int reg)
{
	return readl(pt1->regs + reg * 4);
}

static unsigned int pt1_nr_tables = 8;
module_param_named(nr_tables, pt1_nr_tables, uint, 0);

static void pt1_increment_table_count(struct pt1 *pt1)
{
	pt1_write_reg(pt1, 0, 0x00000020);
}

static void pt1_init_table_count(struct pt1 *pt1)
{
	pt1_write_reg(pt1, 0, 0x00000010);
}

static void pt1_register_tables(struct pt1 *pt1, u32 first_pfn)
{
	pt1_write_reg(pt1, 5, first_pfn);
	pt1_write_reg(pt1, 0, 0x0c000040);
}

static void pt1_unregister_tables(struct pt1 *pt1)
{
	pt1_write_reg(pt1, 0, 0x08080000);
}

static int pt1_sync(struct pt1 *pt1)
{
	int i;
	for (i = 0; i < 57; i++) {
		if (pt1_read_reg(pt1, 0) & 0x20000000)
			return 0;
		pt1_write_reg(pt1, 0, 0x00000008);
	}
	dev_err(&pt1->pdev->dev, "could not sync\n");
	return -EIO;
}

static u64 pt1_identify(struct pt1 *pt1)
{
	int i;
	u64 id;
	id = 0;
	for (i = 0; i < 57; i++) {
		id |= (u64)(pt1_read_reg(pt1, 0) >> 30 & 1) << i;
		pt1_write_reg(pt1, 0, 0x00000008);
	}
	return id;
}

static int pt1_unlock(struct pt1 *pt1)
{
	int i;
	pt1_write_reg(pt1, 0, 0x00000008);
	for (i = 0; i < 3; i++) {
		if (pt1_read_reg(pt1, 0) & 0x80000000)
			return 0;
		usleep_range(1000, 2000);
	}
	dev_err(&pt1->pdev->dev, "could not unlock\n");
	return -EIO;
}

static int pt1_reset_pci(struct pt1 *pt1)
{
	int i;
	pt1_write_reg(pt1, 0, 0x01010000);
	pt1_write_reg(pt1, 0, 0x01000000);
	for (i = 0; i < 10; i++) {
		if (pt1_read_reg(pt1, 0) & 0x00000001)
			return 0;
		usleep_range(1000, 2000);
	}
	dev_err(&pt1->pdev->dev, "could not reset PCI\n");
	return -EIO;
}

static int pt1_reset_ram(struct pt1 *pt1)
{
	int i;
	pt1_write_reg(pt1, 0, 0x02020000);
	pt1_write_reg(pt1, 0, 0x02000000);
	for (i = 0; i < 10; i++) {
		if (pt1_read_reg(pt1, 0) & 0x00000002)
			return 0;
		usleep_range(1000, 2000);
	}
	dev_err(&pt1->pdev->dev, "could not reset RAM\n");
	return -EIO;
}

static int pt1_do_enable_ram(struct pt1 *pt1)
{
	int i, j;
	u32 status;
	status = pt1_read_reg(pt1, 0) & 0x00000004;
	pt1_write_reg(pt1, 0, 0x00000002);
	for (i = 0; i < 10; i++) {
		for (j = 0; j < 1024; j++) {
			if ((pt1_read_reg(pt1, 0) & 0x00000004) != status)
				return 0;
		}
		usleep_range(1000, 2000);
	}
	dev_err(&pt1->pdev->dev, "could not enable RAM\n");
	return -EIO;
}

static int pt1_enable_ram(struct pt1 *pt1)
{
	int i, ret;
	int phase;
	usleep_range(1000, 2000);
	phase = pt1->pdev->device == 0x211a ? 128 : 166;
	for (i = 0; i < phase; i++) {
		ret = pt1_do_enable_ram(pt1);
		if (ret < 0)
			return ret;
	}
	return 0;
}

static void pt1_disable_ram(struct pt1 *pt1)
{
	pt1_write_reg(pt1, 0, 0x0b0b0000);
}

static void pt1_set_stream(struct pt1 *pt1, int index, int enabled)
{
	pt1_write_reg(pt1, 2, 1 << (index + 8) | enabled << index);
}

static void pt1_init_streams(struct pt1 *pt1)
{
	int i;
	for (i = 0; i < PT1_NR_ADAPS; i++)
		pt1_set_stream(pt1, i, 0);
}

static int pt1_filter(struct pt1 *pt1, struct pt1_buffer_page *page)
{
	u32 upacket;
	int i;
	int index;
	struct pt1_adapter *adap;
	int offset;
	u8 *buf;
	int sc;

	if (!page->upackets[PT1_NR_UPACKETS - 1])
		return 0;

	for (i = 0; i < PT1_NR_UPACKETS; i++) {
		upacket = le32_to_cpu(page->upackets[i]);
		index = (upacket >> 29) - 1;
		if (index < 0 || index >=  PT1_NR_ADAPS)
			continue;

		adap = pt1->adaps[index];
		if (upacket >> 25 & 1)
			adap->upacket_count = 0;
		else if (!adap->upacket_count)
			continue;

		if (upacket >> 24 & 1)
			printk_ratelimited(KERN_INFO "earth-pt1: device buffer overflowing. table[%d] buf[%d]\n",
				pt1->table_index, pt1->buf_index);
		sc = upacket >> 26 & 0x7;
		if (adap->st_count != -1 && sc != ((adap->st_count + 1) & 0x7))
			printk_ratelimited(KERN_INFO "earth-pt1: data loss in streamID(adapter)[%d]\n",
					   index);
		adap->st_count = sc;

		buf = adap->buf;
		offset = adap->packet_count * 188 + adap->upacket_count * 3;
		buf[offset] = upacket >> 16;
		buf[offset + 1] = upacket >> 8;
		if (adap->upacket_count != 62)
			buf[offset + 2] = upacket;

		if (++adap->upacket_count >= 63) {
			adap->upacket_count = 0;
			if (++adap->packet_count >= 21) {
				dvb_dmx_swfilter_packets(&adap->demux, buf, 21);
				adap->packet_count = 0;
			}
		}
	}

	page->upackets[PT1_NR_UPACKETS - 1] = 0;
	return 1;
}

static int pt1_thread(void *data)
{
	struct pt1 *pt1;
	struct pt1_buffer_page *page;
	bool was_frozen;

#define PT1_FETCH_DELAY 10
#define PT1_FETCH_DELAY_DELTA 2

	pt1 = data;
	set_freezable();

	while (!kthread_freezable_should_stop(&was_frozen)) {
		if (was_frozen) {
			int i;

			for (i = 0; i < PT1_NR_ADAPS; i++)
				pt1_set_stream(pt1, i, !!pt1->adaps[i]->users);
		}

		page = pt1->tables[pt1->table_index].bufs[pt1->buf_index].page;
		if (!pt1_filter(pt1, page)) {
			ktime_t delay;

			delay = ktime_set(0, PT1_FETCH_DELAY * NSEC_PER_MSEC);
			set_current_state(TASK_INTERRUPTIBLE);
			schedule_hrtimeout_range(&delay,
					PT1_FETCH_DELAY_DELTA * NSEC_PER_MSEC,
					HRTIMER_MODE_REL);
			continue;
		}

		if (++pt1->buf_index >= PT1_NR_BUFS) {
			pt1_increment_table_count(pt1);
			pt1->buf_index = 0;
			if (++pt1->table_index >= pt1_nr_tables)
				pt1->table_index = 0;
		}
	}

	return 0;
}

static void pt1_free_page(struct pt1 *pt1, void *page, dma_addr_t addr)
{
	dma_free_coherent(&pt1->pdev->dev, PT1_PAGE_SIZE, page, addr);
}

static void *pt1_alloc_page(struct pt1 *pt1, dma_addr_t *addrp, u32 *pfnp)
{
	void *page;
	dma_addr_t addr;

	page = dma_alloc_coherent(&pt1->pdev->dev, PT1_PAGE_SIZE, &addr,
				  GFP_KERNEL);
	if (page == NULL)
		return NULL;

	BUG_ON(addr & (PT1_PAGE_SIZE - 1));
	BUG_ON(addr >> PT1_PAGE_SHIFT >> 31 >> 1);

	*addrp = addr;
	*pfnp = addr >> PT1_PAGE_SHIFT;
	return page;
}

static void pt1_cleanup_buffer(struct pt1 *pt1, struct pt1_buffer *buf)
{
	pt1_free_page(pt1, buf->page, buf->addr);
}

static int
pt1_init_buffer(struct pt1 *pt1, struct pt1_buffer *buf,  u32 *pfnp)
{
	struct pt1_buffer_page *page;
	dma_addr_t addr;

	page = pt1_alloc_page(pt1, &addr, pfnp);
	if (page == NULL)
		return -ENOMEM;

	page->upackets[PT1_NR_UPACKETS - 1] = 0;

	buf->page = page;
	buf->addr = addr;
	return 0;
}

static void pt1_cleanup_table(struct pt1 *pt1, struct pt1_table *table)
{
	int i;

	for (i = 0; i < PT1_NR_BUFS; i++)
		pt1_cleanup_buffer(pt1, &table->bufs[i]);

	pt1_free_page(pt1, table->page, table->addr);
}

static int
pt1_init_table(struct pt1 *pt1, struct pt1_table *table, u32 *pfnp)
{
	struct pt1_table_page *page;
	dma_addr_t addr;
	int i, ret;
	u32 buf_pfn;

	page = pt1_alloc_page(pt1, &addr, pfnp);
	if (page == NULL)
		return -ENOMEM;

	for (i = 0; i < PT1_NR_BUFS; i++) {
		ret = pt1_init_buffer(pt1, &table->bufs[i], &buf_pfn);
		if (ret < 0)
			goto err;

		page->buf_pfns[i] = cpu_to_le32(buf_pfn);
	}

	pt1_increment_table_count(pt1);
	table->page = page;
	table->addr = addr;
	return 0;

err:
	while (i--)
		pt1_cleanup_buffer(pt1, &table->bufs[i]);

	pt1_free_page(pt1, page, addr);
	return ret;
}

static void pt1_cleanup_tables(struct pt1 *pt1)
{
	struct pt1_table *tables;
	int i;

	tables = pt1->tables;
	pt1_unregister_tables(pt1);

	for (i = 0; i < pt1_nr_tables; i++)
		pt1_cleanup_table(pt1, &tables[i]);

	vfree(tables);
}

static int pt1_init_tables(struct pt1 *pt1)
{
	struct pt1_table *tables;
	int i, ret;
	u32 first_pfn, pfn;

	if (!pt1_nr_tables)
		return 0;

	tables = vmalloc(array_size(pt1_nr_tables, sizeof(struct pt1_table)));
	if (tables == NULL)
		return -ENOMEM;

	pt1_init_table_count(pt1);

	i = 0;
	ret = pt1_init_table(pt1, &tables[0], &first_pfn);
	if (ret)
		goto err;
	i++;

	while (i < pt1_nr_tables) {
		ret = pt1_init_table(pt1, &tables[i], &pfn);
		if (ret)
			goto err;
		tables[i - 1].page->next_pfn = cpu_to_le32(pfn);
		i++;
	}

	tables[pt1_nr_tables - 1].page->next_pfn = cpu_to_le32(first_pfn);

	pt1_register_tables(pt1, first_pfn);
	pt1->tables = tables;
	return 0;

err:
	while (i--)
		pt1_cleanup_table(pt1, &tables[i]);

	vfree(tables);
	return ret;
}

static int pt1_start_polling(struct pt1 *pt1)
{
	int ret = 0;

	mutex_lock(&pt1->lock);
	if (!pt1->kthread) {
		pt1->kthread = kthread_run(pt1_thread, pt1, "earth-pt1");
		if (IS_ERR(pt1->kthread)) {
			ret = PTR_ERR(pt1->kthread);
			pt1->kthread = NULL;
		}
	}
	mutex_unlock(&pt1->lock);
	return ret;
}

static int pt1_start_feed(struct dvb_demux_feed *feed)
{
	struct pt1_adapter *adap;
	adap = container_of(feed->demux, struct pt1_adapter, demux);
	if (!adap->users++) {
		int ret;

		ret = pt1_start_polling(adap->pt1);
		if (ret)
			return ret;
		pt1_set_stream(adap->pt1, adap->index, 1);
	}
	return 0;
}

static void pt1_stop_polling(struct pt1 *pt1)
{
	int i, count;

	mutex_lock(&pt1->lock);
	for (i = 0, count = 0; i < PT1_NR_ADAPS; i++)
		count += pt1->adaps[i]->users;

	if (count == 0 && pt1->kthread) {
		kthread_stop(pt1->kthread);
		pt1->kthread = NULL;
	}
	mutex_unlock(&pt1->lock);
}

static int pt1_stop_feed(struct dvb_demux_feed *feed)
{
	struct pt1_adapter *adap;
	adap = container_of(feed->demux, struct pt1_adapter, demux);
	if (!--adap->users) {
		pt1_set_stream(adap->pt1, adap->index, 0);
		pt1_stop_polling(adap->pt1);
	}
	return 0;
}

static void
pt1_update_power(struct pt1 *pt1)
{
	int bits;
	int i;
	struct pt1_adapter *adap;
	static const int sleep_bits[] = {
		1 << 4,
		1 << 6 | 1 << 7,
		1 << 5,
		1 << 6 | 1 << 8,
	};

	bits = pt1->power | !pt1->reset << 3;
	mutex_lock(&pt1->lock);
	for (i = 0; i < PT1_NR_ADAPS; i++) {
		adap = pt1->adaps[i];
		switch (adap->voltage) {
		case SEC_VOLTAGE_13: /* actually 11V */
			bits |= 1 << 2;
			break;
		case SEC_VOLTAGE_18: /* actually 15V */
			bits |= 1 << 1 | 1 << 2;
			break;
		default:
			break;
		}

		/* XXX: The bits should be changed depending on adap->sleep. */
		bits |= sleep_bits[i];
	}
	pt1_write_reg(pt1, 1, bits);
	mutex_unlock(&pt1->lock);
}

static int pt1_set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage voltage)
{
	struct pt1_adapter *adap;

	adap = container_of(fe->dvb, struct pt1_adapter, adap);
	adap->voltage = voltage;
	pt1_update_power(adap->pt1);

	if (adap->orig_set_voltage)
		return adap->orig_set_voltage(fe, voltage);
	else
		return 0;
}

static int pt1_sleep(struct dvb_frontend *fe)
{
	struct pt1_adapter *adap;
	int ret;

	adap = container_of(fe->dvb, struct pt1_adapter, adap);

	ret = 0;
	if (adap->orig_sleep)
		ret = adap->orig_sleep(fe);

	adap->sleep = 1;
	pt1_update_power(adap->pt1);
	return ret;
}

static int pt1_wakeup(struct dvb_frontend *fe)
{
	struct pt1_adapter *adap;
	int ret;

	adap = container_of(fe->dvb, struct pt1_adapter, adap);
	adap->sleep = 0;
	pt1_update_power(adap->pt1);
	usleep_range(1000, 2000);

	ret = config_demod(adap->demod_i2c_client, adap->pt1->fe_clk);
	if (ret == 0 && adap->orig_init)
		ret = adap->orig_init(fe);
	return ret;
}

static void pt1_free_adapter(struct pt1_adapter *adap)
{
	adap->demux.dmx.close(&adap->demux.dmx);
	dvb_dmxdev_release(&adap->dmxdev);
	dvb_dmx_release(&adap->demux);
	dvb_unregister_adapter(&adap->adap);
	free_page((unsigned long)adap->buf);
	kfree(adap);
}

DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);

static struct pt1_adapter *
pt1_alloc_adapter(struct pt1 *pt1)
{
	struct pt1_adapter *adap;
	void *buf;
	struct dvb_adapter *dvb_adap;
	struct dvb_demux *demux;
	struct dmxdev *dmxdev;
	int ret;

	adap = kzalloc(sizeof(struct pt1_adapter), GFP_KERNEL);
	if (!adap) {
		ret = -ENOMEM;
		goto err;
	}

	adap->pt1 = pt1;

	adap->voltage = SEC_VOLTAGE_OFF;
	adap->sleep = 1;

	buf = (u8 *)__get_free_page(GFP_KERNEL);
	if (!buf) {
		ret = -ENOMEM;
		goto err_kfree;
	}

	adap->buf = buf;
	adap->upacket_count = 0;
	adap->packet_count = 0;
	adap->st_count = -1;

	dvb_adap = &adap->adap;
	dvb_adap->priv = adap;
	ret = dvb_register_adapter(dvb_adap, DRIVER_NAME, THIS_MODULE,
				   &pt1->pdev->dev, adapter_nr);
	if (ret < 0)
		goto err_free_page;

	demux = &adap->demux;
	demux->dmx.capabilities = DMX_TS_FILTERING | DMX_SECTION_FILTERING;
	demux->priv = adap;
	demux->feednum = 256;
	demux->filternum = 256;
	demux->start_feed = pt1_start_feed;
	demux->stop_feed = pt1_stop_feed;
	demux->write_to_decoder = NULL;
	ret = dvb_dmx_init(demux);
	if (ret < 0)
		goto err_unregister_adapter;

	dmxdev = &adap->dmxdev;
	dmxdev->filternum = 256;
	dmxdev->demux = &demux->dmx;
	dmxdev->capabilities = 0;
	ret = dvb_dmxdev_init(dmxdev, dvb_adap);
	if (ret < 0)
		goto err_dmx_release;

	return adap;

err_dmx_release:
	dvb_dmx_release(demux);
err_unregister_adapter:
	dvb_unregister_adapter(dvb_adap);
err_free_page:
	free_page((unsigned long)buf);
err_kfree:
	kfree(adap);
err:
	return ERR_PTR(ret);
}

static void pt1_cleanup_adapters(struct pt1 *pt1)
{
	int i;
	for (i = 0; i < PT1_NR_ADAPS; i++)
		pt1_free_adapter(pt1->adaps[i]);
}

static int pt1_init_adapters(struct pt1 *pt1)
{
	int i;
	struct pt1_adapter *adap;
	int ret;

	for (i = 0; i < PT1_NR_ADAPS; i++) {
		adap = pt1_alloc_adapter(pt1);
		if (IS_ERR(adap)) {
			ret = PTR_ERR(adap);
			goto err;
		}

		adap->index = i;
		pt1->adaps[i] = adap;
	}
	return 0;

err:
	while (i--)
		pt1_free_adapter(pt1->adaps[i]);

	return ret;
}

static void pt1_cleanup_frontend(struct pt1_adapter *adap)
{
	dvb_unregister_frontend(adap->fe);
	dvb_module_release(adap->tuner_i2c_client);
	dvb_module_release(adap->demod_i2c_client);
}

static int pt1_init_frontend(struct pt1_adapter *adap, struct dvb_frontend *fe)
{
	int ret;

	adap->orig_set_voltage = fe->ops.set_voltage;
	adap->orig_sleep = fe->ops.sleep;
	adap->orig_init = fe->ops.init;
	fe->ops.set_voltage = pt1_set_voltage;
	fe->ops.sleep = pt1_sleep;
	fe->ops.init = pt1_wakeup;

	ret = dvb_register_frontend(&adap->adap, fe);
	if (ret < 0)
		return ret;

	adap->fe = fe;
	return 0;
}

static void pt1_cleanup_frontends(struct pt1 *pt1)
{
	int i;
	for (i = 0; i < PT1_NR_ADAPS; i++)
		pt1_cleanup_frontend(pt1->adaps[i]);
}

static int pt1_init_frontends(struct pt1 *pt1)
{
	int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(pt1_configs); i++) {
		const struct i2c_board_info *info;
		struct tc90522_config dcfg;
		struct i2c_client *cl;

		info = &pt1_configs[i].demod_info;
		dcfg = pt1_configs[i].demod_cfg;
		dcfg.tuner_i2c = NULL;

		ret = -ENODEV;
		cl = dvb_module_probe("tc90522", info->type, &pt1->i2c_adap,
				      info->addr, &dcfg);
		if (!cl)
			goto fe_unregister;
		pt1->adaps[i]->demod_i2c_client = cl;

		if (!strncmp(cl->name, TC90522_I2C_DEV_SAT,
			     strlen(TC90522_I2C_DEV_SAT))) {
			struct qm1d1b0004_config tcfg;

			info = &pt1_configs[i].tuner_info;
			tcfg = pt1_configs[i].tuner_cfg.qm1d1b0004;
			tcfg.fe = dcfg.fe;
			cl = dvb_module_probe("qm1d1b0004",
					      info->type, dcfg.tuner_i2c,
					      info->addr, &tcfg);
		} else {
			struct dvb_pll_config tcfg;

			info = &pt1_configs[i].tuner_info;
			tcfg = pt1_configs[i].tuner_cfg.tda6651;
			tcfg.fe = dcfg.fe;
			cl = dvb_module_probe("dvb_pll",
					      info->type, dcfg.tuner_i2c,
					      info->addr, &tcfg);
		}
		if (!cl)
			goto demod_release;
		pt1->adaps[i]->tuner_i2c_client = cl;

		ret = pt1_init_frontend(pt1->adaps[i], dcfg.fe);
		if (ret < 0)
			goto tuner_release;
	}

	ret = pt1_demod_block_init(pt1);
	if (ret < 0)
		goto fe_unregister;

	return 0;

tuner_release:
	dvb_module_release(pt1->adaps[i]->tuner_i2c_client);
demod_release:
	dvb_module_release(pt1->adaps[i]->demod_i2c_client);
fe_unregister:
	dev_warn(&pt1->pdev->dev, "failed to init FE(%d).\n", i);
	i--;
	for (; i >= 0; i--) {
		dvb_unregister_frontend(pt1->adaps[i]->fe);
		dvb_module_release(pt1->adaps[i]->tuner_i2c_client);
		dvb_module_release(pt1->adaps[i]->demod_i2c_client);
	}
	return ret;
}

static void pt1_i2c_emit(struct pt1 *pt1, int addr, int busy, int read_enable,
			 int clock, int data, int next_addr)
{
	pt1_write_reg(pt1, 4, addr << 18 | busy << 13 | read_enable << 12 |
		      !clock << 11 | !data << 10 | next_addr);
}

static void pt1_i2c_write_bit(struct pt1 *pt1, int addr, int *addrp, int data)
{
	pt1_i2c_emit(pt1, addr,     1, 0, 0, data, addr + 1);
	pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, data, addr + 2);
	pt1_i2c_emit(pt1, addr + 2, 1, 0, 0, data, addr + 3);
	*addrp = addr + 3;
}

static void pt1_i2c_read_bit(struct pt1 *pt1, int addr, int *addrp)
{
	pt1_i2c_emit(pt1, addr,     1, 0, 0, 1, addr + 1);
	pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 1, addr + 2);
	pt1_i2c_emit(pt1, addr + 2, 1, 1, 1, 1, addr + 3);
	pt1_i2c_emit(pt1, addr + 3, 1, 0, 0, 1, addr + 4);
	*addrp = addr + 4;
}

static void pt1_i2c_write_byte(struct pt1 *pt1, int addr, int *addrp, int data)
{
	int i;
	for (i = 0; i < 8; i++)
		pt1_i2c_write_bit(pt1, addr, &addr, data >> (7 - i) & 1);
	pt1_i2c_write_bit(pt1, addr, &addr, 1);
	*addrp = addr;
}

static void pt1_i2c_read_byte(struct pt1 *pt1, int addr, int *addrp, int last)
{
	int i;
	for (i = 0; i < 8; i++)
		pt1_i2c_read_bit(pt1, addr, &addr);
	pt1_i2c_write_bit(pt1, addr, &addr, last);
	*addrp = addr;
}

static void pt1_i2c_prepare(struct pt1 *pt1, int addr, int *addrp)
{
	pt1_i2c_emit(pt1, addr,     1, 0, 1, 1, addr + 1);
	pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
	pt1_i2c_emit(pt1, addr + 2, 1, 0, 0, 0, addr + 3);
	*addrp = addr + 3;
}

static void
pt1_i2c_write_msg(struct pt1 *pt1, int addr, int *addrp, struct i2c_msg *msg)
{
	int i;
	pt1_i2c_prepare(pt1, addr, &addr);
	pt1_i2c_write_byte(pt1, addr, &addr, msg->addr << 1);
	for (i = 0; i < msg->len; i++)
		pt1_i2c_write_byte(pt1, addr, &addr, msg->buf[i]);
	*addrp = addr;
}

static void
pt1_i2c_read_msg(struct pt1 *pt1, int addr, int *addrp, struct i2c_msg *msg)
{
	int i;
	pt1_i2c_prepare(pt1, addr, &addr);
	pt1_i2c_write_byte(pt1, addr, &addr, msg->addr << 1 | 1);
	for (i = 0; i < msg->len; i++)
		pt1_i2c_read_byte(pt1, addr, &addr, i == msg->len - 1);
	*addrp = addr;
}

static int pt1_i2c_end(struct pt1 *pt1, int addr)
{
	pt1_i2c_emit(pt1, addr,     1, 0, 0, 0, addr + 1);
	pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
	pt1_i2c_emit(pt1, addr + 2, 1, 0, 1, 1, 0);

	pt1_write_reg(pt1, 0, 0x00000004);
	do {
		if (signal_pending(current))
			return -EINTR;
		usleep_range(1000, 2000);
	} while (pt1_read_reg(pt1, 0) & 0x00000080);
	return 0;
}

static void pt1_i2c_begin(struct pt1 *pt1, int *addrp)
{
	int addr;
	addr = 0;

	pt1_i2c_emit(pt1, addr,     0, 0, 1, 1, addr /* itself */);
	addr = addr + 1;

	if (!pt1->i2c_running) {
		pt1_i2c_emit(pt1, addr,     1, 0, 1, 1, addr + 1);
		pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
		addr = addr + 2;
		pt1->i2c_running = 1;
	}
	*addrp = addr;
}

static int pt1_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
	struct pt1 *pt1;
	int i;
	struct i2c_msg *msg, *next_msg;
	int addr, ret;
	u16 len;
	u32 word;

	pt1 = i2c_get_adapdata(adap);

	for (i = 0; i < num; i++) {
		msg = &msgs[i];
		if (msg->flags & I2C_M_RD)
			return -ENOTSUPP;

		if (i + 1 < num)
			next_msg = &msgs[i + 1];
		else
			next_msg = NULL;

		if (next_msg && next_msg->flags & I2C_M_RD) {
			i++;

			len = next_msg->len;
			if (len > 4)
				return -ENOTSUPP;

			pt1_i2c_begin(pt1, &addr);
			pt1_i2c_write_msg(pt1, addr, &addr, msg);
			pt1_i2c_read_msg(pt1, addr, &addr, next_msg);
			ret = pt1_i2c_end(pt1, addr);
			if (ret < 0)
				return ret;

			word = pt1_read_reg(pt1, 2);
			while (len--) {
				next_msg->buf[len] = word;
				word >>= 8;
			}
		} else {
			pt1_i2c_begin(pt1, &addr);
			pt1_i2c_write_msg(pt1, addr, &addr, msg);
			ret = pt1_i2c_end(pt1, addr);
			if (ret < 0)
				return ret;
		}
	}

	return num;
}

static u32 pt1_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C;
}

static const struct i2c_algorithm pt1_i2c_algo = {
	.master_xfer = pt1_i2c_xfer,
	.functionality = pt1_i2c_func,
};

static void pt1_i2c_wait(struct pt1 *pt1)
{
	int i;
	for (i = 0; i < 128; i++)
		pt1_i2c_emit(pt1, 0, 0, 0, 1, 1, 0);
}

static void pt1_i2c_init(struct pt1 *pt1)
{
	int i;
	for (i = 0; i < 1024; i++)
		pt1_i2c_emit(pt1, i, 0, 0, 1, 1, 0);
}

#ifdef CONFIG_PM_SLEEP

static int pt1_suspend(struct device *dev)
{
	struct pt1 *pt1 = dev_get_drvdata(dev);

	pt1_init_streams(pt1);
	pt1_disable_ram(pt1);
	pt1->power = 0;
	pt1->reset = 1;
	pt1_update_power(pt1);
	return 0;
}

static int pt1_resume(struct device *dev)
{
	struct pt1 *pt1 = dev_get_drvdata(dev);
	int ret;
	int i;

	pt1->power = 0;
	pt1->reset = 1;
	pt1_update_power(pt1);

	pt1_i2c_init(pt1);
	pt1_i2c_wait(pt1);

	ret = pt1_sync(pt1);
	if (ret < 0)
		goto resume_err;

	pt1_identify(pt1);

	ret = pt1_unlock(pt1);
	if (ret < 0)
		goto resume_err;

	ret = pt1_reset_pci(pt1);
	if (ret < 0)
		goto resume_err;

	ret = pt1_reset_ram(pt1);
	if (ret < 0)
		goto resume_err;

	ret = pt1_enable_ram(pt1);
	if (ret < 0)
		goto resume_err;

	pt1_init_streams(pt1);

	pt1->power = 1;
	pt1_update_power(pt1);
	msleep(20);

	pt1->reset = 0;
	pt1_update_power(pt1);
	usleep_range(1000, 2000);

	ret = pt1_demod_block_init(pt1);
	if (ret < 0)
		goto resume_err;

	for (i = 0; i < PT1_NR_ADAPS; i++)
		dvb_frontend_reinitialise(pt1->adaps[i]->fe);

	pt1_init_table_count(pt1);
	for (i = 0; i < pt1_nr_tables; i++) {
		int j;

		for (j = 0; j < PT1_NR_BUFS; j++)
			pt1->tables[i].bufs[j].page->upackets[PT1_NR_UPACKETS-1]
				= 0;
		pt1_increment_table_count(pt1);
	}
	pt1_register_tables(pt1, pt1->tables[0].addr >> PT1_PAGE_SHIFT);

	pt1->table_index = 0;
	pt1->buf_index = 0;
	for (i = 0; i < PT1_NR_ADAPS; i++) {
		pt1->adaps[i]->upacket_count = 0;
		pt1->adaps[i]->packet_count = 0;
		pt1->adaps[i]->st_count = -1;
	}

	return 0;

resume_err:
	dev_info(&pt1->pdev->dev, "failed to resume PT1/PT2.");
	return 0;	/* resume anyway */
}

#endif /* CONFIG_PM_SLEEP */

static void pt1_remove(struct pci_dev *pdev)
{
	struct pt1 *pt1;
	void __iomem *regs;

	pt1 = pci_get_drvdata(pdev);
	regs = pt1->regs;

	if (pt1->kthread)
		kthread_stop(pt1->kthread);
	pt1_cleanup_tables(pt1);
	pt1_cleanup_frontends(pt1);
	pt1_disable_ram(pt1);
	pt1->power = 0;
	pt1->reset = 1;
	pt1_update_power(pt1);
	pt1_cleanup_adapters(pt1);
	i2c_del_adapter(&pt1->i2c_adap);
	kfree(pt1);
	pci_iounmap(pdev, regs);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
}

static int pt1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	int ret;
	void __iomem *regs;
	struct pt1 *pt1;
	struct i2c_adapter *i2c_adap;

	ret = pci_enable_device(pdev);
	if (ret < 0)
		goto err;

	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
	if (ret < 0)
		goto err_pci_disable_device;

	pci_set_master(pdev);

	ret = pci_request_regions(pdev, DRIVER_NAME);
	if (ret < 0)
		goto err_pci_disable_device;

	regs = pci_iomap(pdev, 0, 0);
	if (!regs) {
		ret = -EIO;
		goto err_pci_release_regions;
	}

	pt1 = kzalloc(sizeof(struct pt1), GFP_KERNEL);
	if (!pt1) {
		ret = -ENOMEM;
		goto err_pci_iounmap;
	}

	mutex_init(&pt1->lock);
	pt1->pdev = pdev;
	pt1->regs = regs;
	pt1->fe_clk = (pdev->device == 0x211a) ?
				PT1_FE_CLK_20MHZ : PT1_FE_CLK_25MHZ;
	pci_set_drvdata(pdev, pt1);

	ret = pt1_init_adapters(pt1);
	if (ret < 0)
		goto err_kfree;

	mutex_init(&pt1->lock);

	pt1->power = 0;
	pt1->reset = 1;
	pt1_update_power(pt1);

	i2c_adap = &pt1->i2c_adap;
	i2c_adap->algo = &pt1_i2c_algo;
	i2c_adap->algo_data = NULL;
	i2c_adap->dev.parent = &pdev->dev;
	strscpy(i2c_adap->name, DRIVER_NAME, sizeof(i2c_adap->name));
	i2c_set_adapdata(i2c_adap, pt1);
	ret = i2c_add_adapter(i2c_adap);
	if (ret < 0)
		goto err_pt1_cleanup_adapters;

	pt1_i2c_init(pt1);
	pt1_i2c_wait(pt1);

	ret = pt1_sync(pt1);
	if (ret < 0)
		goto err_i2c_del_adapter;

	pt1_identify(pt1);

	ret = pt1_unlock(pt1);
	if (ret < 0)
		goto err_i2c_del_adapter;

	ret = pt1_reset_pci(pt1);
	if (ret < 0)
		goto err_i2c_del_adapter;

	ret = pt1_reset_ram(pt1);
	if (ret < 0)
		goto err_i2c_del_adapter;

	ret = pt1_enable_ram(pt1);
	if (ret < 0)
		goto err_i2c_del_adapter;

	pt1_init_streams(pt1);

	pt1->power = 1;
	pt1_update_power(pt1);
	msleep(20);

	pt1->reset = 0;
	pt1_update_power(pt1);
	usleep_range(1000, 2000);

	ret = pt1_init_frontends(pt1);
	if (ret < 0)
		goto err_pt1_disable_ram;

	ret = pt1_init_tables(pt1);
	if (ret < 0)
		goto err_pt1_cleanup_frontends;

	return 0;

err_pt1_cleanup_frontends:
	pt1_cleanup_frontends(pt1);
err_pt1_disable_ram:
	pt1_disable_ram(pt1);
	pt1->power = 0;
	pt1->reset = 1;
	pt1_update_power(pt1);
err_i2c_del_adapter:
	i2c_del_adapter(i2c_adap);
err_pt1_cleanup_adapters:
	pt1_cleanup_adapters(pt1);
err_kfree:
	kfree(pt1);
err_pci_iounmap:
	pci_iounmap(pdev, regs);
err_pci_release_regions:
	pci_release_regions(pdev);
err_pci_disable_device:
	pci_disable_device(pdev);
err:
	return ret;

}

static const struct pci_device_id pt1_id_table[] = {
	{ PCI_DEVICE(0x10ee, 0x211a) },
	{ PCI_DEVICE(0x10ee, 0x222a) },
	{ },
};
MODULE_DEVICE_TABLE(pci, pt1_id_table);

static SIMPLE_DEV_PM_OPS(pt1_pm_ops, pt1_suspend, pt1_resume);

static struct pci_driver pt1_driver = {
	.name		= DRIVER_NAME,
	.probe		= pt1_probe,
	.remove		= pt1_remove,
	.id_table	= pt1_id_table,
	.driver.pm	= &pt1_pm_ops,
};

module_pci_driver(pt1_driver);

MODULE_AUTHOR("Takahito HIRANO <hiranotaka@zng.info>");
MODULE_DESCRIPTION("Earthsoft PT1/PT2 Driver");
MODULE_LICENSE("GPL"