// SPDX-License-Identifier: ISC
/*
 * Copyright (c) 2005-2011 Atheros Communications Inc.
 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
 */

#include <linux/pci.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/bitops.h>

#include "core.h"
#include "debug.h"
#include "coredump.h"

#include "targaddrs.h"
#include "bmi.h"

#include "hif.h"
#include "htc.h"

#include "ce.h"
#include "pci.h"

enum ath10k_pci_reset_mode {
	ATH10K_PCI_RESET_AUTO = 0,
	ATH10K_PCI_RESET_WARM_ONLY = 1,
};

static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;

module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");

module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");

/* how long wait to wait for target to initialise, in ms */
#define ATH10K_PCI_TARGET_WAIT 3000
#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3

/* Maximum number of bytes that can be handled atomically by
 * diag read and write.
 */
#define ATH10K_DIAG_TRANSFER_LIMIT	0x5000

#define QCA99X0_PCIE_BAR0_START_REG    0x81030
#define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
#define QCA99X0_CPU_MEM_DATA_REG       0x4d010

static const struct pci_device_id ath10k_pci_id_table[] = {
	/* PCI-E QCA988X V2 (Ubiquiti branded) */
	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },

	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
	{0}
};

static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
	/* QCA988X pre 2.0 chips are not supported because they need some nasty
	 * hacks. ath10k doesn't have them and these devices crash horribly
	 * because of that.
	 */
	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },

	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },

	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },

	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },

	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },

	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },

	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },

	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
};

static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
static int ath10k_pci_cold_reset(struct ath10k *ar);
static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
static int ath10k_pci_init_irq(struct ath10k *ar);
static int ath10k_pci_deinit_irq(struct ath10k *ar);
static int ath10k_pci_request_irq(struct ath10k *ar);
static void ath10k_pci_free_irq(struct ath10k *ar);
static int ath10k_pci_bmi_wait(struct ath10k *ar,
			       struct ath10k_ce_pipe *tx_pipe,
			       struct ath10k_ce_pipe *rx_pipe,
			       struct bmi_xfer *xfer);
static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);

static struct ce_attr host_ce_config_wlan[] = {
	/* CE0: host->target HTC control and raw streams */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 16,
		.src_sz_max = 256,
		.dest_nentries = 0,
		.send_cb = ath10k_pci_htc_tx_cb,
	},

	/* CE1: target->host HTT + HTC control */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 2048,
		.dest_nentries = 512,
		.recv_cb = ath10k_pci_htt_htc_rx_cb,
	},

	/* CE2: target->host WMI */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 2048,
		.dest_nentries = 128,
		.recv_cb = ath10k_pci_htc_rx_cb,
	},

	/* CE3: host->target WMI */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 32,
		.src_sz_max = 2048,
		.dest_nentries = 0,
		.send_cb = ath10k_pci_htc_tx_cb,
	},

	/* CE4: host->target HTT */
	{
		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
		.src_sz_max = 256,
		.dest_nentries = 0,
		.send_cb = ath10k_pci_htt_tx_cb,
	},

	/* CE5: target->host HTT (HIF->HTT) */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 512,
		.dest_nentries = 512,
		.recv_cb = ath10k_pci_htt_rx_cb,
	},

	/* CE6: target autonomous hif_memcpy */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 0,
		.dest_nentries = 0,
	},

	/* CE7: ce_diag, the Diagnostic Window */
	{
		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
		.src_nentries = 2,
		.src_sz_max = DIAG_TRANSFER_LIMIT,
		.dest_nentries = 2,
	},

	/* CE8: target->host pktlog */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 2048,
		.dest_nentries = 128,
		.recv_cb = ath10k_pci_pktlog_rx_cb,
	},

	/* CE9 target autonomous qcache memcpy */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 0,
		.dest_nentries = 0,
	},

	/* CE10: target autonomous hif memcpy */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 0,
		.dest_nentries = 0,
	},

	/* CE11: target autonomous hif memcpy */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 0,
		.dest_nentries = 0,
	},
};

/* Target firmware's Copy Engine configuration. */
static struct ce_pipe_config target_ce_config_wlan[] = {
	/* CE0: host->target HTC control and raw streams */
	{
		.pipenum = __cpu_to_le32(0),
		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
		.nentries = __cpu_to_le32(32),
		.nbytes_max = __cpu_to_le32(256),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
	},

	/* CE1: target->host HTT + HTC control */
	{
		.pipenum = __cpu_to_le32(1),
		.pipedir = __cpu_to_le32(PIPEDIR_IN),
		.nentries = __cpu_to_le32(32),
		.nbytes_max = __cpu_to_le32(2048),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
	},

	/* CE2: target->host WMI */
	{
		.pipenum = __cpu_to_le32(2),
		.pipedir = __cpu_to_le32(PIPEDIR_IN),
		.nentries = __cpu_to_le32(64),
		.nbytes_max = __cpu_to_le32(2048),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
	},

	/* CE3: host->target WMI */
	{
		.pipenum = __cpu_to_le32(3),
		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
		.nentries = __cpu_to_le32(32),
		.nbytes_max = __cpu_to_le32(2048),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
	},

	/* CE4: host->target HTT */
	{
		.pipenum = __cpu_to_le32(4),
		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
		.nentries = __cpu_to_le32(256),
		.nbytes_max = __cpu_to_le32(256),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
	},

	/* NB: 50% of src nentries, since tx has 2 frags */

	/* CE5: target->host HTT (HIF->HTT) */
	{
		.pipenum = __cpu_to_le32(5),
		.pipedir = __cpu_to_le32(PIPEDIR_IN),
		.nentries = __cpu_to_le32(32),
		.nbytes_max = __cpu_to_le32(512),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
	},

	/* CE6: Reserved for target autonomous hif_memcpy */
	{
		.pipenum = __cpu_to_le32(6),
		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
		.nentries = __cpu_to_le32(32),
		.nbytes_max = __cpu_to_le32(4096),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
	},

	/* CE7 used only by Host */
	{
		.pipenum = __cpu_to_le32(7),
		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
		.nentries = __cpu_to_le32(0),
		.nbytes_max = __cpu_to_le32(0),
		.flags = __cpu_to_le32(0),
		.reserved = __cpu_to_le32(0),
	},

	/* CE8 target->host packtlog */
	{
		.pipenum = __cpu_to_le32(8),
		.pipedir = __cpu_to_le32(PIPEDIR_IN),
		.nentries = __cpu_to_le32(64),
		.nbytes_max = __cpu_to_le32(2048),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
		.reserved = __cpu_to_le32(0),
	},

	/* CE9 target autonomous qcache memcpy */
	{
		.pipenum = __cpu_to_le32(9),
		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
		.nentries = __cpu_to_le32(32),
		.nbytes_max = __cpu_to_le32(2048),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
		.reserved = __cpu_to_le32(0),
	},

	/* It not necessary to send target wlan configuration for CE10 & CE11
	 * as these CEs are not actively used in target.
	 */
};

/*
 * Map from service/endpoint to Copy Engine.
 * This table is derived from the CE_PCI TABLE, above.
 * It is passed to the Target at startup for use by firmware.
 */
static struct service_to_pipe target_service_to_ce_map_wlan[] = {
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(3),
	},
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(2),
	},
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(3),
	},
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(2),
	},
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(3),
	},
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(2),
	},
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(3),
	},
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(2),
	},
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(3),
	},
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(2),
	},
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(0),
	},
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(1),
	},
	{ /* not used */
		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(0),
	},
	{ /* not used */
		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(1),
	},
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(4),
	},
	{
		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(5),
	},

	/* (Additions here) */

	{ /* must be last */
		__cpu_to_le32(0),
		__cpu_to_le32(0),
		__cpu_to_le32(0),
	},
};

static bool ath10k_pci_is_awake(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
			   RTC_STATE_ADDRESS);

	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
}

static void __ath10k_pci_wake(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	lockdep_assert_held(&ar_pci->ps_lock);

	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);

	iowrite32(PCIE_SOC_WAKE_V_MASK,
		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
		  PCIE_SOC_WAKE_ADDRESS);
}

static void __ath10k_pci_sleep(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	lockdep_assert_held(&ar_pci->ps_lock);

	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);

	iowrite32(PCIE_SOC_WAKE_RESET,
		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
		  PCIE_SOC_WAKE_ADDRESS);
	ar_pci->ps_awake = false;
}

static int ath10k_pci_wake_wait(struct ath10k *ar)
{
	int tot_delay = 0;
	int curr_delay = 5;

	while (tot_delay < PCIE_WAKE_TIMEOUT) {
		if (ath10k_pci_is_awake(ar)) {
			if (tot_delay > PCIE_WAKE_LATE_US)
				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
					    tot_delay / 1000);
			return 0;
		}

		udelay(curr_delay);
		tot_delay += curr_delay;

		if (curr_delay < 50)
			curr_delay += 5;
	}

	return -ETIMEDOUT;
}

static int ath10k_pci_force_wake(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long flags;
	int ret = 0;

	if (ar_pci->pci_ps)
		return ret;

	spin_lock_irqsave(&ar_pci->ps_lock, flags);

	if (!ar_pci->ps_awake) {
		iowrite32(PCIE_SOC_WAKE_V_MASK,
			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
			  PCIE_SOC_WAKE_ADDRESS);

		ret = ath10k_pci_wake_wait(ar);
		if (ret == 0)
			ar_pci->ps_awake = true;
	}

	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);

	return ret;
}

static void ath10k_pci_force_sleep(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long flags;

	spin_lock_irqsave(&ar_pci->ps_lock, flags);

	iowrite32(PCIE_SOC_WAKE_RESET,
		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
		  PCIE_SOC_WAKE_ADDRESS);
	ar_pci->ps_awake = false;

	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}

static int ath10k_pci_wake(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long flags;
	int ret = 0;

	if (ar_pci->pci_ps == 0)
		return ret;

	spin_lock_irqsave(&ar_pci->ps_lock, flags);

	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);

	/* This function can be called very frequently. To avoid excessive
	 * CPU stalls for MMIO reads use a cache var to hold the device state.
	 */
	if (!ar_pci->ps_awake) {
		__ath10k_pci_wake(ar);

		ret = ath10k_pci_wake_wait(ar);
		if (ret == 0)
			ar_pci->ps_awake = true;
	}

	if (ret == 0) {
		ar_pci->ps_wake_refcount++;
		WARN_ON(ar_pci->ps_wake_refcount == 0);
	}

	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);

	return ret;
}

static void ath10k_pci_sleep(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long flags;

	if (ar_pci->pci_ps == 0)
		return;

	spin_lock_irqsave(&ar_pci->ps_lock, flags);

	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);

	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
		goto skip;

	ar_pci->ps_wake_refcount--;

	mod_timer(&ar_pci->ps_timer, jiffies +
		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));

skip:
	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}

static void ath10k_pci_ps_timer(struct timer_list *t)
{
	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
	struct ath10k *ar = ar_pci->ar;
	unsigned long flags;

	spin_lock_irqsave(&ar_pci->ps_lock, flags);

	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);

	if (ar_pci->ps_wake_refcount > 0)
		goto skip;

	__ath10k_pci_sleep(ar);

skip:
	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}

static void ath10k_pci_sleep_sync(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long flags;

	if (ar_pci->pci_ps == 0) {
		ath10k_pci_force_sleep(ar);
		return;
	}

	del_timer_sync(&ar_pci->ps_timer);

	spin_lock_irqsave(&ar_pci->ps_lock, flags);
	WARN_ON(ar_pci->ps_wake_refcount > 0);
	__ath10k_pci_sleep(ar);
	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}

static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
			    offset, offset + sizeof(value), ar_pci->mem_len);
		return;
	}

	ret = ath10k_pci_wake(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
			    value, offset, ret);
		return;
	}

	iowrite32(value, ar_pci->mem + offset);
	ath10k_pci_sleep(ar);
}

static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	u32 val;
	int ret;

	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
			    offset, offset + sizeof(val), ar_pci->mem_len);
		return 0;
	}

	ret = ath10k_pci_wake(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
			    offset, ret);
		return 0xffffffff;
	}

	val = ioread32(ar_pci->mem + offset);
	ath10k_pci_sleep(ar);

	return val;
}

inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);

	ce->bus_ops->write32(ar, offset, value);
}

inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);

	return ce->bus_ops->read32(ar, offset);
}

u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
{
	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
}

void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
{
	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
}

u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
{
	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
}

void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
{
	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
}

bool ath10k_pci_irq_pending(struct ath10k *ar)
{
	u32 cause;

	/* Check if the shared legacy irq is for us */
	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
				  PCIE_INTR_CAUSE_ADDRESS);
	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
		return true;

	return false;
}

void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
{
	/* IMPORTANT: INTR_CLR register has to be set after
	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
	 * really cleared.
	 */
	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
			   0);
	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);

	/* IMPORTANT: this extra read transaction is required to
	 * flush the posted write buffer.
	 */
	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
				PCIE_INTR_ENABLE_ADDRESS);
}

void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
{
	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
			   PCIE_INTR_ENABLE_ADDRESS,
			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);

	/* IMPORTANT: this extra read transaction is required to
	 * flush the posted write buffer.
	 */
	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
				PCIE_INTR_ENABLE_ADDRESS);
}

static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
		return "msi";

	return "legacy";
}

static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
{
	struct ath10k *ar = pipe->hif_ce_state;
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
	struct sk_buff *skb;
	dma_addr_t paddr;
	int ret;

	skb = dev_alloc_skb(pipe->buf_sz);
	if (!skb)
		return -ENOMEM;

	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");

	paddr = dma_map_single(ar->dev, skb->data,
			       skb->len + skb_tailroom(skb),
			       DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
		ath10k_warn(ar, "failed to dma map pci rx buf\n");
		dev_kfree_skb_any(skb);
		return -EIO;
	}

	ATH10K_SKB_RXCB(skb)->paddr = paddr;

	spin_lock_bh(&ce->ce_lock);
	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
	spin_unlock_bh(&ce->ce_lock);
	if (ret) {
		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
				 DMA_FROM_DEVICE);
		dev_kfree_skb_any(skb);
		return ret;
	}

	return 0;
}

static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
{
	struct ath10k *ar = pipe->hif_ce_state;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
	int ret, num;

	if (pipe->buf_sz == 0)
		return;

	if (!ce_pipe->dest_ring)
		return;

	spin_lock_bh(&ce->ce_lock);
	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
	spin_unlock_bh(&ce->ce_lock);

	while (num >= 0) {
		ret = __ath10k_pci_rx_post_buf(pipe);
		if (ret) {
			if (ret == -ENOSPC)
				break;
			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
			mod_timer(&ar_pci->rx_post_retry, jiffies +
				  ATH10K_PCI_RX_POST_RETRY_MS);
			break;
		}
		num--;
	}
}

void ath10k_pci_rx_post(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int i;

	for (i = 0; i < CE_COUNT; i++)
		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
}

void ath10k_pci_rx_replenish_retry(struct timer_list *t)
{
	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
	struct ath10k *ar = ar_pci->ar;

	ath10k_pci_rx_post(ar);
}

static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
{
	u32 val = 0, region = addr & 0xfffff;

	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
				 & 0x7ff) << 21;
	val |= 0x100000 | region;
	return val;
}

/* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
 * Support to access target space below 1M for qca6174 and qca9377.
 * If target space is below 1M, the bit[20] of converted CE addr is 0.
 * Otherwise bit[20] of converted CE addr is 1.
 */
static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
{
	u32 val = 0, region = addr & 0xfffff;

	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
				 & 0x7ff) << 21;
	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
	return val;
}

static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
{
	u32 val = 0, region = addr & 0xfffff;

	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
	val |= 0x100000 | region;
	return val;
}

static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
		return -ENOTSUPP;

	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
}

/*
 * Diagnostic read/write access is provided for startup/config/debug usage.
 * Caller must guarantee proper alignment, when applicable, and single user
 * at any moment.
 */
static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
				    int nbytes)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret = 0;
	u32 *buf;
	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
	struct ath10k_ce_pipe *ce_diag;
	/* Host buffer address in CE space */
	u32 ce_data;
	dma_addr_t ce_data_base = 0;
	void *data_buf = NULL;
	int i;

	mutex_lock(&ar_pci->ce_diag_mutex);
	ce_diag = ar_pci->ce_diag;

	/*
	 * Allocate a temporary bounce buffer to hold caller's data
	 * to be DMA'ed from Target. This guarantees
	 *   1) 4-byte alignment
	 *   2) Buffer in DMA-able space
	 */
	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);

	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev, alloc_nbytes,
						       &ce_data_base,
						       GFP_ATOMIC);

	if (!data_buf) {
		ret = -ENOMEM;
		goto done;
	}

	/* The address supplied by the caller is in the
	 * Target CPU virtual address space.
	 *
	 * In order to use this address with the diagnostic CE,
	 * convert it from Target CPU virtual address space
	 * to CE address space
	 */
	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);

	remaining_bytes = nbytes;
	ce_data = ce_data_base;
	while (remaining_bytes) {
		nbytes = min_t(unsigned int, remaining_bytes,
			       DIAG_TRANSFER_LIMIT);

		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
		if (ret != 0)
			goto done;

		/* Request CE to send from Target(!) address to Host buffer */
		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
		if (ret)
			goto done;

		i = 0;
		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
			udelay(DIAG_ACCESS_CE_WAIT_US);
			i += DIAG_ACCESS_CE_WAIT_US;

			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
				ret = -EBUSY;
				goto done;
			}
		}

		i = 0;
		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
						     &completed_nbytes) != 0) {
			udelay(DIAG_ACCESS_CE_WAIT_US);
			i += DIAG_ACCESS_CE_WAIT_US;

			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
				ret = -EBUSY;
				goto done;
			}
		}

		if (nbytes != completed_nbytes) {
			ret = -EIO;
			goto done;
		}

		if (*buf != ce_data) {
			ret = -EIO;
			goto done;
		}

		remaining_bytes -= nbytes;
		memcpy(data, data_buf, nbytes);

		address += nbytes;
		data += nbytes;
	}

done:

	if (data_buf)
		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
				  ce_data_base);

	mutex_unlock(&ar_pci->ce_diag_mutex);

	return ret;
}

static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
{
	__le32 val = 0;
	int ret;

	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
	*value = __le32_to_cpu(val);

	return ret;
}

static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
				     u32 src, u32 len)
{
	u32 host_addr, addr;
	int ret;

	host_addr = host_interest_item_address(src);

	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
	if (ret != 0) {
		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
			    src, ret);
		return ret;
	}

	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
	if (ret != 0) {
		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
			    addr, len, ret);
		return ret;
	}

	return 0;
}

#define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)

int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
			      const void *data, int nbytes)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret = 0;
	u32 *buf;
	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
	struct ath10k_ce_pipe *ce_diag;
	void *data_buf = NULL;
	dma_addr_t ce_data_base = 0;
	int i;

	mutex_lock(&ar_pci->ce_diag_mutex);
	ce_diag = ar_pci->ce_diag;

	/*
	 * Allocate a temporary bounce buffer to hold caller's data
	 * to be DMA'ed to Target. This guarantees
	 *   1) 4-byte alignment
	 *   2) Buffer in DMA-able space
	 */
	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);

	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
						       alloc_nbytes,
						       &ce_data_base,
						       GFP_ATOMIC);
	if (!data_buf) {
		ret = -ENOMEM;
		goto done;
	}

	/*
	 * The address supplied by the caller is in the
	 * Target CPU virtual address space.
	 *
	 * In order to use this address with the diagnostic CE,
	 * convert it from
	 *    Target CPU virtual address space
	 * to
	 *    CE address space
	 */
	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);

	remaining_bytes = nbytes;
	while (remaining_bytes) {
		/* FIXME: check cast */
		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);

		/* Copy caller's data to allocated DMA buf */
		memcpy(data_buf, data, nbytes);

		/* Set up to receive directly into Target(!) address */
		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
		if (ret != 0)
			goto done;

		/*
		 * Request CE to send caller-supplied data that
		 * was copied to bounce buffer to Target(!) address.
		 */
		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
		if (ret != 0)
			goto done;

		i = 0;
		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
			udelay(DIAG_ACCESS_CE_WAIT_US);
			i += DIAG_ACCESS_CE_WAIT_US;

			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
				ret = -EBUSY;
				goto done;
			}
		}

		i = 0;
		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
						     &completed_nbytes) != 0) {
			udelay(DIAG_ACCESS_CE_WAIT_US);
			i += DIAG_ACCESS_CE_WAIT_US;

			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
				ret = -EBUSY;
				goto done;
			}
		}

		if (nbytes != completed_nbytes) {
			ret = -EIO;
			goto done;
		}

		if (*buf != address) {
			ret = -EIO;
			goto done;
		}

		remaining_bytes -= nbytes;
		address += nbytes;
		data += nbytes;
	}

done:
	if (data_buf) {
		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
				  ce_data_base);
	}

	if (ret != 0)
		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
			    address, ret);

	mutex_unlock(&ar_pci->ce_diag_mutex);

	return ret;
}

static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
{
	__le32 val = __cpu_to_le32(value);

	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
}

/* Called by lower (CE) layer when a send to Target completes. */
static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
{
	struct ath10k *ar = ce_state->ar;
	struct sk_buff_head list;
	struct sk_buff *skb;

	__skb_queue_head_init(&list);
	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
		/* no need to call tx completion for NULL pointers */
		if (skb == NULL)
			continue;

		__skb_queue_tail(&list, skb);
	}

	while ((skb = __skb_dequeue(&list)))
		ath10k_htc_tx_completion_handler(ar, skb);
}

static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
				     void (*callback)(struct ath10k *ar,
						      struct sk_buff *skb))
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
	struct sk_buff *skb;
	struct sk_buff_head list;
	void *transfer_context;
	unsigned int nbytes, max_nbytes;

	__skb_queue_head_init(&list);
	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
					     &nbytes) == 0) {
		skb = transfer_context;
		max_nbytes = skb->len + skb_tailroom(skb);
		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
				 max_nbytes, DMA_FROM_DEVICE);

		if (unlikely(max_nbytes < nbytes)) {
			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
				    nbytes, max_nbytes);
			dev_kfree_skb_any(skb);
			continue;
		}

		skb_put(skb, nbytes);
		__skb_queue_tail(&list, skb);
	}

	while ((skb = __skb_dequeue(&list))) {
		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
			   ce_state->id, skb->len);
		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
				skb->data, skb->len);

		callback(ar, skb);
	}

	ath10k_pci_rx_post_pipe(pipe_info);
}

static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
					 void (*callback)(struct ath10k *ar,
							  struct sk_buff *skb))
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
	struct sk_buff *skb;
	struct sk_buff_head list;
	void *transfer_context;
	unsigned int nbytes, max_nbytes, nentries;
	int orig_len;

	/* No need to aquire ce_lock for CE5, since this is the only place CE5
	 * is processed other than init and deinit. Before releasing CE5
	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
	 */
	__skb_queue_head_init(&list);
	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
						    &nbytes) == 0) {
		skb = transfer_context;
		max_nbytes = skb->len + skb_tailroom(skb);

		if (unlikely(max_nbytes < nbytes)) {
			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
				    nbytes, max_nbytes);
			continue;
		}

		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
					max_nbytes, DMA_FROM_DEVICE);
		skb_put(skb, nbytes);
		__skb_queue_tail(&list, skb);
	}

	nentries = skb_queue_len(&list);
	while ((skb = __skb_dequeue(&list))) {
		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
			   ce_state->id, skb->len);
		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
				skb->data, skb->len);

		orig_len = skb->len;
		callback(ar, skb);
		skb_push(skb, orig_len - skb->len);
		skb_reset_tail_pointer(skb);
		skb_trim(skb, 0);

		/*let device gain the buffer again*/
		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
					   skb->len + skb_tailroom(skb),
					   DMA_FROM_DEVICE);
	}
	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
}

/* Called by lower (CE) layer when data is received from the Target. */
static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
{
	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
}

static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
{
	/* CE4 polling needs to be done whenever CE pipe which transports
	 * HTT Rx (target->host) is processed.
	 */
	ath10k_ce_per_engine_service(ce_state->ar, 4);

	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
}

/* Called by lower (CE) layer when data is received from the Target.
 * Only 10.4 firmware uses separate CE to transfer pktlog data.
 */
static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
{
	ath10k_pci_process_rx_cb(ce_state,
				 ath10k_htt_rx_pktlog_completion_handler);
}

/* Called by lower (CE) layer when a send to HTT Target completes. */
static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
{
	struct ath10k *ar = ce_state->ar;
	struct sk_buff *skb;

	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
		/* no need to call tx completion for NULL pointers */
		if (!skb)
			continue;

		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
				 skb->len, DMA_TO_DEVICE);
		ath10k_htt_hif_tx_complete(ar, skb);
	}
}

static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
{
	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
	ath10k_htt_t2h_msg_handler(ar, skb);
}

/* Called by lower (CE) layer when HTT data is received from the Target. */
static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
{
	/* CE4 polling needs to be done whenever CE pipe which transports
	 * HTT Rx (target->host) is processed.
	 */
	ath10k_ce_per_engine_service(ce_state->ar, 4);

	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
}

int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
			 struct ath10k_hif_sg_item *items, int n_items)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
	int err, i = 0;

	spin_lock_bh(&ce->ce_lock);

	nentries_mask = src_ring->nentries_mask;
	sw_index = src_ring->sw_index;
	write_index = src_ring->write_index;

	if (unlikely(CE_RING_DELTA(nentries_mask,
				   write_index, sw_index - 1) < n_items)) {
		err = -ENOBUFS;
		goto err;
	}

	for (i = 0; i < n_items - 1; i++) {
		ath10k_dbg(ar, ATH10K_DBG_PCI,
			   "pci tx item %d paddr %pad len %d n_items %d\n",
			   i, &items[i].paddr, items[i].len, n_items);
		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
				items[i].vaddr, items[i].len);

		err = ath10k_ce_send_nolock(ce_pipe,
					    items[i].transfer_context,
					    items[i].paddr,
					    items[i].len,
					    items[i].transfer_id,
					    CE_SEND_FLAG_GATHER);
		if (err)
			goto err;
	}

	/* `i` is equal to `n_items -1` after for() */

	ath10k_dbg(ar, ATH10K_DBG_PCI,
		   "pci tx item %d paddr %pad len %d n_items %d\n",
		   i, &items[i].paddr, items[i].len, n_items);
	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
			items[i].vaddr, items[i].len);

	err = ath10k_ce_send_nolock(ce_pipe,
				    items[i].transfer_context,
				    items[i].paddr,
				    items[i].len,
				    items[i].transfer_id,
				    0);
	if (err)
		goto err;

	spin_unlock_bh(&ce->ce_lock);
	return 0;

err:
	for (; i > 0; i--)
		__ath10k_ce_send_revert(ce_pipe);

	spin_unlock_bh(&ce->ce_lock);
	return err;
}

int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
			     size_t buf_len)
{
	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
}

u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");

	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
}

static void ath10k_pci_dump_registers(struct ath10k *ar,
				      struct ath10k_fw_crash_data *crash_data)
{
	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
	int i, ret;

	lockdep_assert_held(&ar->dump_mutex);

	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
				      hi_failure_state,
				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
	if (ret) {
		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
		return;
	}

	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);

	ath10k_err(ar, "firmware register dump:\n");
	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
			   i,
			   __le32_to_cpu(reg_dump_values[i]),
			   __le32_to_cpu(reg_dump_values[i + 1]),
			   __le32_to_cpu(reg_dump_values[i + 2]),
			   __le32_to_cpu(reg_dump_values[i + 3]));

	if (!crash_data)
		return;

	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
		crash_data->registers[i] = reg_dump_values[i];
}

static int ath10k_pci_dump_memory_section(struct ath10k *ar,
					  const struct ath10k_mem_region *mem_region,
					  u8 *buf, size_t buf_len)
{
	const struct ath10k_mem_section *cur_section, *next_section;
	unsigned int count, section_size, skip_size;
	int ret, i, j;

	if (!mem_region || !buf)
		return 0;

	cur_section = &mem_region->section_table.sections[0];

	if (mem_region->start > cur_section->start) {
		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
			    mem_region->start, cur_section->start);
		return 0;
	}

	skip_size = cur_section->start - mem_region->start;

	/* fill the gap between the first register section and register
	 * start address
	 */
	for (i = 0; i < skip_size; i++) {
		*buf = ATH10K_MAGIC_NOT_COPIED;
		buf++;
	}

	count = 0;

	for (i = 0; cur_section != NULL; i++) {
		section_size = cur_section->end - cur_section->start;

		if (section_size <= 0) {
			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
				    cur_section->start,
				    cur_section->end);
			break;
		}

		if ((i + 1) == mem_region->section_table.size) {
			/* last section */
			next_section = NULL;
			skip_size = 0;
		} else {
			next_section = cur_section + 1;

			if (cur_section->end > next_section->start) {
				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
					    next_section->start,
					    cur_section->end);
				break;
			}

			skip_size = next_section->start - cur_section->end;
		}

		if (buf_len < (skip_size + section_size)) {
			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
			break;
		}

		buf_len -= skip_size + section_size;

		/* read section to dest memory */
		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
					       buf, section_size);
		if (ret) {
			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
				    cur_section->start, ret);
			break;
		}

		buf += section_size;
		count += section_size;

		/* fill in the gap between this section and the next */
		for (j = 0; j < skip_size; j++) {
			*buf = ATH10K_MAGIC_NOT_COPIED;
			buf++;
		}

		count += skip_size;

		if (!next_section)
			/* this was the last section */
			break;

		cur_section = next_section;
	}

	return count;
}

static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
{
	u32 val;

	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
			   FW_RAM_CONFIG_ADDRESS, config);

	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
				FW_RAM_CONFIG_ADDRESS);
	if (val != config) {
		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
			    val, config);
		return -EIO;
	}

	return 0;
}

/* if an error happened returns < 0, otherwise the length */
static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
				       const struct ath10k_mem_region *region,
				       u8 *buf)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	u32 base_addr, i;

	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
	base_addr += region->start;

	for (i = 0; i < region->len; i += 4) {
		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
	}

	return region->len;
}

/* if an error happened returns < 0, otherwise the length */
static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
				      const struct ath10k_mem_region *region,
				      u8 *buf)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	u32 i;

	for (i = 0; i < region->len; i += 4)
		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);

	return region->len;
}

/* if an error happened returns < 0, otherwise the length */
static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
					  const struct ath10k_mem_region *current_region,
					  u8 *buf)
{
	int ret;

	if (current_region->section_table.size > 0)
		/* Copy each section individually. */
		return ath10k_pci_dump_memory_section(ar,
						      current_region,
						      buf,
						      current_region->len);

	/* No individiual memory sections defined so we can
	 * copy the entire memory region.
	 */
	ret = ath10k_pci_diag_read_mem(ar,
				       current_region->start,
				       buf,
				       current_region->len);
	if (ret) {
		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
			    current_region->name, ret);
		return ret;
	}

	return current_region->len;
}

static void ath10k_pci_dump_memory(struct ath10k *ar,
				   struct ath10k_fw_crash_data *crash_data)
{
	const struct ath10k_hw_mem_layout *mem_layout;
	const struct ath10k_mem_region *current_region;
	struct ath10k_dump_ram_data_hdr *hdr;
	u32 count, shift;
	size_t buf_len;
	int ret, i;
	u8 *buf;

	lockdep_assert_held(&ar->dump_mutex);

	if (!crash_data)
		return;

	mem_layout = ath10k_coredump_get_mem_layout(ar);
	if (!mem_layout)
		return;

	current_region = &mem_layout->region_table.regions[0];

	buf = crash_data->ramdump_buf;
	buf_len = crash_data->ramdump_buf_len;

	memset(buf, 0, buf_len);

	for (i = 0; i < mem_layout->region_table.size; i++) {
		count = 0;

		if (current_region->len > buf_len) {
			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
				    current_region->name,
				    current_region->len,
				    buf_len);
			break;
		}

		/* To get IRAM dump, the host driver needs to switch target
		 * ram config from DRAM to IRAM.
		 */
		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
			shift = current_region->start >> 20;

			ret = ath10k_pci_set_ram_config(ar, shift);
			if (ret) {
				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
					    current_region->name, ret);
				break;
			}
		}

		/* Reserve space for the header. */
		hdr = (void *)buf;
		buf += sizeof(*hdr);
		buf_len -= sizeof(*hdr);

		switch (current_region->type) {
		case ATH10K_MEM_REGION_TYPE_IOSRAM:
			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
			break;
		case ATH10K_MEM_REGION_TYPE_IOREG:
			count = ath10k_pci_dump_memory_reg(ar, current_region, buf);
			break;
		default:
			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
			if (ret < 0)
				break;

			count = ret;
			break;
		}

		hdr->region_type = cpu_to_le32(current_region->type);
		hdr->start = cpu_to_le32(current_region->start);
		hdr->length = cpu_to_le32(count);

		if (count == 0)
			/* Note: the header remains, just with zero length. */
			break;

		buf += count;
		buf_len -= count;

		current_region++;
	}
}

static void ath10k_pci_fw_dump_work(struct work_struct *work)
{
	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
						 dump_work);
	struct ath10k_fw_crash_data *crash_data;
	struct ath10k *ar = ar_pci->ar;
	char guid[UUID_STRING_LEN + 1];

	mutex_lock(&ar->dump_mutex);

	spin_lock_bh(&ar->data_lock);
	ar->stats.fw_crash_counter++;
	spin_unlock_bh(&ar->data_lock);

	crash_data = ath10k_coredump_new(ar);

	if (crash_data)
		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
	else
		scnprintf(guid, sizeof(guid), "n/a");

	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
	ath10k_print_driver_info(ar);
	ath10k_pci_dump_registers(ar, crash_data);
	ath10k_ce_dump_registers(ar, crash_data);
	ath10k_pci_dump_memory(ar, crash_data);

	mutex_unlock(&ar->dump_mutex);

	queue_work(ar->workqueue, &ar->restart_work);
}

static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	queue_work(ar->workqueue, &ar_pci->dump_work);
}

void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
					int force)
{
	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");

	if (!force) {
		int resources;
		/*
		 * Decide whether to actually poll for completions, or just
		 * wait for a later chance.
		 * If there seem to be plenty of resources left, then just wait
		 * since checking involves reading a CE register, which is a
		 * relatively expensive operation.
		 */
		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);

		/*
		 * If at least 50% of the total resources are still available,
		 * don't bother checking again yet.
		 */
		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
			return;
	}
	ath10k_ce_per_engine_service(ar, pipe);
}

static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	del_timer_sync(&ar_pci->rx_post_retry);
}

int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
				       u8 *ul_pipe, u8 *dl_pipe)
{
	const struct service_to_pipe *entry;
	bool ul_set = false, dl_set = false;
	int i;

	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");

	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
		entry = &target_service_to_ce_map_wlan[i];

		if (__le32_to_cpu(entry->service_id) != service_id)
			continue;

		switch (__le32_to_cpu(entry->pipedir)) {
		case PIPEDIR_NONE:
			break;
		case PIPEDIR_IN:
			WARN_ON(dl_set);
			*dl_pipe = __le32_to_cpu(entry->pipenum);
			dl_set = true;
			break;
		case PIPEDIR_OUT:
			WARN_ON(ul_set);
			*ul_pipe = __le32_to_cpu(entry->pipenum);
			ul_set = true;
			break;
		case PIPEDIR_INOUT:
			WARN_ON(dl_set);
			WARN_ON(ul_set);
			*dl_pipe = __le32_to_cpu(entry->pipenum);
			*ul_pipe = __le32_to_cpu(entry->pipenum);
			dl_set = true;
			ul_set = true;
			break;
		}
	}

	if (!ul_set || !dl_set)
		return -ENOENT;

	return 0;
}

void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
				     u8 *ul_pipe, u8 *dl_pipe)
{
	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");

	(void)ath10k_pci_hif_map_service_to_pipe(ar,
						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
						 ul_pipe, dl_pipe);
}

void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
{
	u32 val;

	switch (ar->hw_rev) {
	case ATH10K_HW_QCA988X:
	case ATH10K_HW_QCA9887:
	case ATH10K_HW_QCA6174:
	case ATH10K_HW_QCA9377:
		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
					CORE_CTRL_ADDRESS);
		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
				   CORE_CTRL_ADDRESS, val);
		break;
	case ATH10K_HW_QCA99X0:
	case ATH10K_HW_QCA9984:
	case ATH10K_HW_QCA9888:
	case ATH10K_HW_QCA4019:
		/* TODO: Find appropriate register configuration for QCA99X0
		 *  to mask irq/MSI.
		 */
		break;
	case ATH10K_HW_WCN3990:
		break;
	}
}

static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
{
	u32 val;

	switch (ar->hw_rev) {
	case ATH10K_HW_QCA988X:
	case ATH10K_HW_QCA9887:
	case ATH10K_HW_QCA6174:
	case ATH10K_HW_QCA9377:
		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
					CORE_CTRL_ADDRESS);
		val |= CORE_CTRL_PCIE_REG_31_MASK;
		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
				   CORE_CTRL_ADDRESS, val);
		break;
	case ATH10K_HW_QCA99X0:
	case ATH10K_HW_QCA9984:
	case ATH10K_HW_QCA9888:
	case ATH10K_HW_QCA4019:
		/* TODO: Find appropriate register configuration for QCA99X0
		 *  to unmask irq/MSI.
		 */
		break;
	case ATH10K_HW_WCN3990:
		break;
	}
}

static void ath10k_pci_irq_disable(struct ath10k *ar)
{
	ath10k_ce_disable_interrupts(ar);
	ath10k_pci_disable_and_clear_legacy_irq(ar);
	ath10k_pci_irq_msi_fw_mask(ar);
}

static void ath10k_pci_irq_sync(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	synchronize_irq(ar_pci->pdev->irq);
}

static void ath10k_pci_irq_enable(struct ath10k *ar)
{
	ath10k_ce_enable_interrupts(ar);
	ath10k_pci_enable_legacy_irq(ar);
	ath10k_pci_irq_msi_fw_unmask(ar);
}

static int ath10k_pci_hif_start(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");

	napi_enable(&ar->napi);

	ath10k_pci_irq_enable(ar);
	ath10k_pci_rx_post(ar);

	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
				   ar_pci->link_ctl);

	return 0;
}

static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
{
	struct ath10k *ar;
	struct ath10k_ce_pipe *ce_pipe;
	struct ath10k_ce_ring *ce_ring;
	struct sk_buff *skb;
	int i;

	ar = pci_pipe->hif_ce_state;
	ce_pipe = pci_pipe->ce_hdl;
	ce_ring = ce_pipe->dest_ring;

	if (!ce_ring)
		return;

	if (!pci_pipe->buf_sz)
		return;

	for (i = 0; i < ce_ring->nentries; i++) {
		skb = ce_ring->per_transfer_context[i];
		if (!skb)
			continue;

		ce_ring->per_transfer_context[i] = NULL;

		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
				 skb->len + skb_tailroom(skb),
				 DMA_FROM_DEVICE);
		dev_kfree_skb_any(skb);
	}
}

static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
{
	struct ath10k *ar;
	struct ath10k_ce_pipe *ce_pipe;
	struct ath10k_ce_ring *ce_ring;
	struct sk_buff *skb;
	int i;

	ar = pci_pipe->hif_ce_state;
	ce_pipe = pci_pipe->ce_hdl;
	ce_ring = ce_pipe->src_ring;

	if (!ce_ring)
		return;

	if (!pci_pipe->buf_sz)
		return;

	for (i = 0; i < ce_ring->nentries; i++) {
		skb = ce_ring->per_transfer_context[i];
		if (!skb)
			continue;

		ce_ring->per_transfer_context[i] = NULL;

		ath10k_htc_tx_completion_handler(ar, skb);
	}
}

/*
 * Cleanup residual buffers for device shutdown:
 *    buffers that were enqueued for receive
 *    buffers that were to be sent
 * Note: Buffers that had completed but which were
 * not yet processed are on a completion queue. They
 * are handled when the completion thread shuts down.
 */
static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int pipe_num;

	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
		struct ath10k_pci_pipe *pipe_info;

		pipe_info = &ar_pci->pipe_info[pipe_num];
		ath10k_pci_rx_pipe_cleanup(pipe_info);
		ath10k_pci_tx_pipe_cleanup(pipe_info);
	}
}

void ath10k_pci_ce_deinit(struct ath10k *ar)
{
	int i;

	for (i = 0; i < CE_COUNT; i++)
		ath10k_ce_deinit_pipe(ar, i);
}

void ath10k_pci_flush(struct ath10k *ar)
{
	ath10k_pci_rx_retry_sync(ar);
	ath10k_pci_buffer_cleanup(ar);
}

static void ath10k_pci_hif_stop(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long flags;

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");

	/* Most likely the device has HTT Rx ring configured. The only way to
	 * prevent the device from accessing (and possible corrupting) host
	 * memory is to reset the chip now.
	 *
	 * There's also no known way of masking MSI interrupts on the device.
	 * For ranged MSI the CE-related interrupts can be masked. However
	 * regardless how many MSI interrupts are assigned the first one
	 * is always used for firmware indications (crashes) and cannot be
	 * masked. To prevent the device from asserting the interrupt reset it
	 * before proceeding with cleanup.
	 */
	ath10k_pci_safe_chip_reset(ar);

	ath10k_pci_irq_disable(ar);
	ath10k_pci_irq_sync(ar);
	napi_synchronize(&ar->napi);
	napi_disable(&ar->napi);
	ath10k_pci_flush(ar);

	spin_lock_irqsave(&ar_pci->ps_lock, flags);
	WARN_ON(ar_pci->ps_wake_refcount > 0);
	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}

int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
				    void *req, u32 req_len,
				    void *resp, u32 *resp_len)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
	dma_addr_t req_paddr = 0;
	dma_addr_t resp_paddr = 0;
	struct bmi_xfer xfer = {};
	void *treq, *tresp = NULL;
	int ret = 0;

	might_sleep();

	if (resp && !resp_len)
		return -EINVAL;

	if (resp && resp_len && *resp_len == 0)
		return -EINVAL;

	treq = kmemdup(req, req_len, GFP_KERNEL);
	if (!treq)
		return -ENOMEM;

	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
	ret = dma_mapping_error(ar->dev, req_paddr);
	if (ret) {
		ret = -EIO;
		goto err_dma;
	}

	if (resp && resp_len) {
		tresp = kzalloc(*resp_len, GFP_KERNEL);
		if (!tresp) {
			ret = -ENOMEM;
			goto err_req;
		}

		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
					    DMA_FROM_DEVICE);
		ret = dma_mapping_error(ar->dev, resp_paddr);
		if (ret) {
			ret = -EIO;
			goto err_req;
		}

		xfer.wait_for_resp = true;
		xfer.resp_len = 0;

		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
	}

	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
	if (ret)
		goto err_resp;

	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
	if (ret) {
		dma_addr_t unused_buffer;
		unsigned int unused_nbytes;
		unsigned int unused_id;

		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
					   &unused_nbytes, &unused_id);
	} else {
		/* non-zero means we did not time out */
		ret = 0;
	}

err_resp:
	if (resp) {
		dma_addr_t unused_buffer;

		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
		dma_unmap_single(ar->dev, resp_paddr,
				 *resp_len, DMA_FROM_DEVICE);
	}
err_req:
	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);

	if (ret == 0 && resp_len) {
		*resp_len = min(*resp_len, xfer.resp_len);
		memcpy(resp, tresp, xfer.resp_len);
	}
err_dma:
	kfree(treq);
	kfree(tresp);

	return ret;
}

static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
{
	struct bmi_xfer *xfer;

	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
		return;

	xfer->tx_done = true;
}

static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
{
	struct ath10k *ar = ce_state->ar;
	struct bmi_xfer *xfer;
	unsigned int nbytes;

	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
					  &nbytes))
		return;

	if (WARN_ON_ONCE(!xfer))
		return;

	if (!xfer->wait_for_resp) {
		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
		return;
	}

	xfer->resp_len = nbytes;
	xfer->rx_done = true;
}

static int ath10k_pci_bmi_wait(struct ath10k *ar,
			       struct ath10k_ce_pipe *tx_pipe,
			       struct ath10k_ce_pipe *rx_pipe,
			       struct bmi_xfer *xfer)
{
	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
	unsigned long started = jiffies;
	unsigned long dur;
	int ret;

	while (time_before_eq(jiffies, timeout)) {
		ath10k_pci_bmi_send_done(tx_pipe);
		ath10k_pci_bmi_recv_data(rx_pipe);

		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
			ret = 0;
			goto out;
		}

		schedule();
	}

	ret = -ETIMEDOUT;

out:
	dur = jiffies - started;
	if (dur > HZ)
		ath10k_dbg(ar, ATH10K_DBG_BMI,
			   "bmi cmd took %lu jiffies hz %d ret %d\n",
			   dur, HZ, ret);
	return ret;
}

/*
 * Send an interrupt to the device to wake up the Target CPU
 * so it has an opportunity to notice any changed state.
 */
static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
{
	u32 addr, val;

	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
	val = ath10k_pci_read32(ar, addr);
	val |= CORE_CTRL_CPU_INTR_MASK;
	ath10k_pci_write32(ar, addr, val);

	return 0;
}

static int ath10k_pci_get_num_banks(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	switch (ar_pci->pdev->device) {
	case QCA988X_2_0_DEVICE_ID_UBNT:
	case QCA988X_2_0_DEVICE_ID:
	case QCA99X0_2_0_DEVICE_ID:
	case QCA9888_2_0_DEVICE_ID:
	case QCA9984_1_0_DEVICE_ID:
	case QCA9887_1_0_DEVICE_ID:
		return 1;
	case QCA6164_2_1_DEVICE_ID:
	case QCA6174_2_1_DEVICE_ID:
		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
		case QCA6174_HW_1_0_CHIP_ID_REV:
		case QCA6174_HW_1_1_CHIP_ID_REV:
		case QCA6174_HW_2_1_CHIP_ID_REV:
		case QCA6174_HW_2_2_CHIP_ID_REV:
			return 3;
		case QCA6174_HW_1_3_CHIP_ID_REV:
			return 2;
		case QCA6174_HW_3_0_CHIP_ID_REV:
		case QCA6174_HW_3_1_CHIP_ID_REV:
		case QCA6174_HW_3_2_CHIP_ID_REV:
			return 9;
		}
		break;
	case QCA9377_1_0_DEVICE_ID:
		return 9;
	}

	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
	return 1;
}

static int ath10k_bus_get_num_banks(struct ath10k *ar)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);

	return ce->bus_ops->get_num_banks(ar);
}

int ath10k_pci_init_config(struct ath10k *ar)
{
	u32 interconnect_targ_addr;
	u32 pcie_state_targ_addr = 0;
	u32 pipe_cfg_targ_addr = 0;
	u32 svc_to_pipe_map = 0;
	u32 pcie_config_flags = 0;
	u32 ealloc_value;
	u32 ealloc_targ_addr;
	u32 flag2_value;
	u32 flag2_targ_addr;
	int ret = 0;

	/* Download to Target the CE Config and the service-to-CE map */
	interconnect_targ_addr =
		host_interest_item_address(HI_ITEM(hi_interconnect_state));

	/* Supply Target-side CE configuration */
	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
				     &pcie_state_targ_addr);
	if (ret != 0) {
		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
		return ret;
	}

	if (pcie_state_targ_addr == 0) {
		ret = -EIO;
		ath10k_err(ar, "Invalid pcie state addr\n");
		return ret;
	}

	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
					  offsetof(struct pcie_state,
						   pipe_cfg_addr)),
				     &pipe_cfg_targ_addr);
	if (ret != 0) {
		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
		return ret;
	}

	if (pipe_cfg_targ_addr == 0) {
		ret = -EIO;
		ath10k_err(ar, "Invalid pipe cfg addr\n");
		return ret;
	}

	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
					target_ce_config_wlan,
					sizeof(struct ce_pipe_config) *
					NUM_TARGET_CE_CONFIG_WLAN);

	if (ret != 0) {
		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
		return ret;
	}

	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
					  offsetof(struct pcie_state,
						   svc_to_pipe_map)),
				     &svc_to_pipe_map);
	if (ret != 0) {
		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
		return ret;
	}

	if (svc_to_pipe_map == 0) {
		ret = -EIO;
		ath10k_err(ar, "Invalid svc_to_pipe map\n");
		return ret;
	}

	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
					target_service_to_ce_map_wlan,
					sizeof(target_service_to_ce_map_wlan));
	if (ret != 0) {
		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
		return ret;
	}

	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
					  offsetof(struct pcie_state,
						   config_flags)),
				     &pcie_config_flags);
	if (ret != 0) {
		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
		return ret;
	}

	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;

	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
					   offsetof(struct pcie_state,
						    config_flags)),
				      pcie_config_flags);
	if (ret != 0) {
		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
		return ret;
	}

	/* configure early allocation */
	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));

	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
	if (ret != 0) {
		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
		return ret;
	}

	/* first bank is switched to IRAM */
	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
			 HI_EARLY_ALLOC_MAGIC_MASK);
	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);

	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
	if (ret != 0) {
		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
		return ret;
	}

	/* Tell Target to proceed with initialization */
	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));

	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
	if (ret != 0) {
		ath10k_err(ar, "Failed to get option val: %d\n", ret);
		return ret;
	}

	flag2_value |= HI_OPTION_EARLY_CFG_DONE;

	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
	if (ret != 0) {
		ath10k_err(ar, "Failed to set option val: %d\n", ret);
		return ret;
	}

	return 0;
}

static void ath10k_pci_override_ce_config(struct ath10k *ar)
{
	struct ce_attr *attr;
	struct ce_pipe_config *config;

	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
	 * since it is currently used for other feature.
	 */

	/* Override Host's Copy Engine 5 configuration */
	attr = &host_ce_config_wlan[5];
	attr->src_sz_max = 0;
	attr->dest_nentries = 0;

	/* Override Target firmware's Copy Engine configuration */
	config = &target_ce_config_wlan[5];
	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
	config->nbytes_max = __cpu_to_le32(2048);

	/* Map from service/endpoint to Copy Engine */
	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
}

int ath10k_pci_alloc_pipes(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_pci_pipe *pipe;
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	int i, ret;

	for (i = 0; i < CE_COUNT; i++) {
		pipe = &ar_pci->pipe_info[i];
		pipe->ce_hdl = &ce->ce_states[i];
		pipe->pipe_num = i;
		pipe->hif_ce_state = ar;

		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
		if (ret) {
			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
				   i, ret);
			return ret;
		}

		/* Last CE is Diagnostic Window */
		if (i == CE_DIAG_PIPE) {
			ar_pci->ce_diag = pipe->ce_hdl;
			continue;
		}

		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
	}

	return 0;
}

void ath10k_pci_free_pipes(struct ath10k *ar)
{
	int i;

	for (i = 0; i < CE_COUNT; i++)
		ath10k_ce_free_pipe(ar, i);
}

int ath10k_pci_init_pipes(struct ath10k *ar)
{
	int i, ret;

	for (i = 0; i < CE_COUNT; i++) {
		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
		if (ret) {
			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
				   i, ret);
			return ret;
		}
	}

	return 0;
}

static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
{
	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
	       FW_IND_EVENT_PENDING;
}

static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
{
	u32 val;

	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
	val &= ~FW_IND_EVENT_PENDING;
	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
}

static bool ath10k_pci_has_device_gone(struct ath10k *ar)
{
	u32 val;

	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
	return (val == 0xffffffff);
}

/* this function effectively clears target memory controller assert line */
static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
{
	u32 val;

	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);

	msleep(10);

	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);

	msleep(10);
}

static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
{
	u32 val;

	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);

	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
				SOC_RESET_CONTROL_ADDRESS);
	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
}

static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
{
	u32 val;

	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
				SOC_RESET_CONTROL_ADDRESS);

	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
			   val | SOC_RESET_CONTROL_CE_RST_MASK);
	msleep(10);
	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
}

static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
{
	u32 val;

	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
				SOC_LF_TIMER_CONTROL0_ADDRESS);
	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
			   SOC_LF_TIMER_CONTROL0_ADDRESS,
			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
}

static int ath10k_pci_warm_reset(struct ath10k *ar)
{
	int ret;

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");

	spin_lock_bh(&ar->data_lock);
	ar->stats.fw_warm_reset_counter++;
	spin_unlock_bh(&ar->data_lock);

	ath10k_pci_irq_disable(ar);

	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
	 * were to access copy engine while host performs copy engine reset
	 * then it is possible for the device to confuse pci-e controller to
	 * the point of bringing host system to a complete stop (i.e. hang).
	 */
	ath10k_pci_warm_reset_si0(ar);
	ath10k_pci_warm_reset_cpu(ar);
	ath10k_pci_init_pipes(ar);
	ath10k_pci_wait_for_target_init(ar);

	ath10k_pci_warm_reset_clear_lf(ar);
	ath10k_pci_warm_reset_ce(ar);
	ath10k_pci_warm_reset_cpu(ar);
	ath10k_pci_init_pipes(ar);

	ret = ath10k_pci_wait_for_target_init(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
		return ret;
	}

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");

	return 0;
}

static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
{
	ath10k_pci_irq_disable(ar);
	return ath10k_pci_qca99x0_chip_reset(ar);
}

static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	if (!ar_pci->pci_soft_reset)
		return -ENOTSUPP;

	return ar_pci->pci_soft_reset(ar);
}

static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
{
	int i, ret;
	u32 val;

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");

	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
	 * It is thus preferred to use warm reset which is safer but may not be
	 * able to recover the device from all possible fail scenarios.
	 *
	 * Warm reset doesn't always work on first try so attempt it a few
	 * times before giving up.
	 */
	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
		ret = ath10k_pci_warm_reset(ar);
		if (ret) {
			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
				    ret);
			continue;
		}

		/* FIXME: Sometimes copy engine doesn't recover after warm
		 * reset. In most cases this needs cold reset. In some of these
		 * cases the device is in such a state that a cold reset may
		 * lock up the host.
		 *
		 * Reading any host interest register via copy engine is
		 * sufficient to verify if device is capable of booting
		 * firmware blob.
		 */
		ret = ath10k_pci_init_pipes(ar);
		if (ret) {
			ath10k_warn(ar, "failed to init copy engine: %d\n",
				    ret);
			continue;
		}

		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
					     &val);
		if (ret) {
			ath10k_warn(ar, "failed to poke copy engine: %d\n",
				    ret);
			continue;
		}

		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
		return 0;
	}

	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
		ath10k_warn(ar, "refusing cold reset as requested\n");
		return -EPERM;
	}

	ret = ath10k_pci_cold_reset(ar);
	if (ret) {
		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
		return ret;
	}

	ret = ath10k_pci_wait_for_target_init(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
			    ret);
		return ret;
	}

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");

	return 0;
}

static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
{
	int ret;

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");

	/* FIXME: QCA6174 requires cold + warm reset to work. */

	ret = ath10k_pci_cold_reset(ar);
	if (ret) {
		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
		return ret;
	}

	ret = ath10k_pci_wait_for_target_init(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
			    ret);
		return ret;
	}

	ret = ath10k_pci_warm_reset(ar);
	if (ret) {
		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
		return ret;
	}

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");

	return 0;
}

static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
{
	int ret;

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");

	ret = ath10k_pci_cold_reset(ar);
	if (ret) {
		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
		return ret;
	}

	ret = ath10k_pci_wait_for_target_init(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
			    ret);
		return ret;
	}

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");

	return 0;
}

static int ath10k_pci_chip_reset(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	if (WARN_ON(!ar_pci->pci_hard_reset))
		return -ENOTSUPP;

	return ar_pci->pci_hard_reset(ar);
}

static int ath10k_pci_hif_power_up(struct ath10k *ar,
				   enum ath10k_firmware_mode fw_mode)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");

	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
				  &ar_pci->link_ctl);
	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);

	/*
	 * Bring the target up cleanly.
	 *
	 * The target may be in an undefined state with an AUX-powered Target
	 * and a Host in WoW mode. If the Host crashes, loses power, or is
	 * restarted (without unloading the driver) then the Target is left
	 * (aux) powered and running. On a subsequent driver load, the Target
	 * is in an unexpected state. We try to catch that here in order to
	 * reset the Target and retry the probe.
	 */
	ret = ath10k_pci_chip_reset(ar);
	if (ret) {
		if (ath10k_pci_has_fw_crashed(ar)) {
			ath10k_warn(ar, "firmware crashed during chip reset\n");
			ath10k_pci_fw_crashed_clear(ar);
			ath10k_pci_fw_crashed_dump(ar);
		}

		ath10k_err(ar, "failed to reset chip: %d\n", ret);
		goto err_sleep;
	}

	ret = ath10k_pci_init_pipes(ar);
	if (ret) {
		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
		goto err_sleep;
	}

	ret = ath10k_pci_init_config(ar);
	if (ret) {
		ath10k_err(ar, "failed to setup init config: %d\n", ret);
		goto err_ce;
	}

	ret = ath10k_pci_wake_target_cpu(ar);
	if (ret) {
		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
		goto err_ce;
	}

	return 0;

err_ce:
	ath10k_pci_ce_deinit(ar);

err_sleep:
	return ret;
}

void ath10k_pci_hif_power_down(struct ath10k *ar)
{
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");

	/* Currently hif_power_up performs effectively a reset and hif_stop
	 * resets the chip as well so there's no point in resetting here.
	 */
}

static int ath10k_pci_hif_suspend(struct ath10k *ar)
{
	/* Nothing to do; the important stuff is in the driver suspend. */
	return 0;
}

static int ath10k_pci_suspend(struct ath10k *ar)
{
	/* The grace timer can still be counting down and ar->ps_awake be true.
	 * It is known that the device may be asleep after resuming regardless
	 * of the SoC powersave state before suspending. Hence make sure the
	 * device is asleep before proceeding.
	 */
	ath10k_pci_sleep_sync(ar);

	return 0;
}

static int ath10k_pci_hif_resume(struct ath10k *ar)
{
	/* Nothing to do; the important stuff is in the driver resume. */
	return 0;
}

static int ath10k_pci_resume(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct pci_dev *pdev = ar_pci->pdev;
	u32 val;
	int ret = 0;

	ret = ath10k_pci_force_wake(ar);
	if (ret) {
		ath10k_err(ar, "failed to wake up target: %d\n", ret);
		return ret;
	}

	/* Suspend/Resume resets the PCI configuration space, so we have to
	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
	 * from interfering with C3 CPU state. pci_restore_state won't help
	 * here since it only restores the first 64 bytes pci config header.
	 */
	pci_read_config_dword(pdev, 0x40, &val);
	if ((val & 0x0000ff00) != 0)
		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);

	return ret;
}

static bool ath10k_pci_validate_cal(void *data, size_t size)
{
	__le16 *cal_words = data;
	u16 checksum = 0;
	size_t i;

	if (size % 2 != 0)
		return false;

	for (i = 0; i < size / 2; i++)
		checksum ^= le16_to_cpu(cal_words[i]);

	return checksum == 0xffff;
}

static void ath10k_pci_enable_eeprom(struct ath10k *ar)
{
	/* Enable SI clock */
	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);

	/* Configure GPIOs for I2C operation */
	ath10k_pci_write32(ar,
			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
			      GPIO_PIN0_CONFIG) |
			   SM(1, GPIO_PIN0_PAD_PULL));

	ath10k_pci_write32(ar,
			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
			   SM(1, GPIO_PIN0_PAD_PULL));

	ath10k_pci_write32(ar,
			   GPIO_BASE_ADDRESS +
			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);

	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
	ath10k_pci_write32(ar,
			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
			   SM(1, SI_CONFIG_ERR_INT) |
			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
			   SM(1, SI_CONFIG_I2C) |
			   SM(1, SI_CONFIG_POS_SAMPLE) |
			   SM(1, SI_CONFIG_INACTIVE_DATA) |
			   SM(1, SI_CONFIG_INACTIVE_CLK) |
			   SM(8, SI_CONFIG_DIVIDER));
}

static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
{
	u32 reg;
	int wait_limit;

	/* set device select byte and for the read operation */
	reg = QCA9887_EEPROM_SELECT_READ |
	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);

	/* write transmit data, transfer length, and START bit */
	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
			   SM(4, SI_CS_TX_CNT));

	/* wait max 1 sec */
	wait_limit = 100000;

	/* wait for SI_CS_DONE_INT */
	do {
		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
		if (MS(reg, SI_CS_DONE_INT))
			break;

		wait_limit--;
		udelay(10);
	} while (wait_limit > 0);

	if (!MS(reg, SI_CS_DONE_INT)) {
		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
			   addr);
		return -ETIMEDOUT;
	}

	/* clear SI_CS_DONE_INT */
	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);

	if (MS(reg, SI_CS_DONE_ERR)) {
		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
		return -EIO;
	}

	/* extract receive data */
	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
	*out = reg;

	return 0;
}

static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
					   size_t *data_len)
{
	u8 *caldata = NULL;
	size_t calsize, i;
	int ret;

	if (!QCA_REV_9887(ar))
		return -EOPNOTSUPP;

	calsize = ar->hw_params.cal_data_len;
	caldata = kmalloc(calsize, GFP_KERNEL);
	if (!caldata)
		return -ENOMEM;

	ath10k_pci_enable_eeprom(ar);

	for (i = 0; i < calsize; i++) {
		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
		if (ret)
			goto err_free;
	}

	if (!ath10k_pci_validate_cal(caldata, calsize))
		goto err_free;

	*data = caldata;
	*data_len = calsize;

	return 0;

err_free:
	kfree(caldata);

	return -EINVAL;
}

static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
	.tx_sg			= ath10k_pci_hif_tx_sg,
	.diag_read		= ath10k_pci_hif_diag_read,
	.diag_write		= ath10k_pci_diag_write_mem,
	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
	.start			= ath10k_pci_hif_start,
	.stop			= ath10k_pci_hif_stop,
	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
	.send_complete_check	= ath10k_pci_hif_send_complete_check,
	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
	.power_up		= ath10k_pci_hif_power_up,
	.power_down		= ath10k_pci_hif_power_down,
	.read32			= ath10k_pci_read32,
	.write32		= ath10k_pci_write32,
	.suspend		= ath10k_pci_hif_suspend,
	.resume			= ath10k_pci_hif_resume,
	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
};

/*
 * Top-level interrupt handler for all PCI interrupts from a Target.
 * When a block of MSI interrupts is allocated, this top-level handler
 * is not used; instead, we directly call the correct sub-handler.
 */
static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
{
	struct ath10k *ar = arg;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	if (ath10k_pci_has_device_gone(ar))
		return IRQ_NONE;

	ret = ath10k_pci_force_wake(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
		return IRQ_NONE;
	}

	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
	    !ath10k_pci_irq_pending(ar))
		return IRQ_NONE;

	ath10k_pci_disable_and_clear_legacy_irq(ar);
	ath10k_pci_irq_msi_fw_mask(ar);
	napi_schedule(&ar->napi);

	return IRQ_HANDLED;
}

static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
{
	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
	int done = 0;

	if (ath10k_pci_has_fw_crashed(ar)) {
		ath10k_pci_fw_crashed_clear(ar);
		ath10k_pci_fw_crashed_dump(ar);
		napi_complete(ctx);
		return done;
	}

	ath10k_ce_per_engine_service_any(ar);

	done = ath10k_htt_txrx_compl_task(ar, budget);

	if (done < budget) {
		napi_complete_done(ctx, done);
		/* In case of MSI, it is possible that interrupts are received
		 * while NAPI poll is inprogress. So pending interrupts that are
		 * received after processing all copy engine pipes by NAPI poll
		 * will not be handled again. This is causing failure to
		 * complete boot sequence in x86 platform. So before enabling
		 * interrupts safer to check for pending interrupts for
		 * immediate servicing.
		 */
		if (ath10k_ce_interrupt_summary(ar)) {
			napi_reschedule(ctx);
			goto out;
		}
		ath10k_pci_enable_legacy_irq(ar);
		ath10k_pci_irq_msi_fw_unmask(ar);
	}

out:
	return done;
}

static int ath10k_pci_request_irq_msi(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	ret = request_irq(ar_pci->pdev->irq,
			  ath10k_pci_interrupt_handler,
			  IRQF_SHARED, "ath10k_pci", ar);
	if (ret) {
		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
			    ar_pci->pdev->irq, ret);
		return ret;
	}

	return 0;
}

static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	ret = request_irq(ar_pci->pdev->irq,
			  ath10k_pci_interrupt_handler,
			  IRQF_SHARED, "ath10k_pci", ar);
	if (ret) {
		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
			    ar_pci->pdev->irq, ret);
		return ret;
	}

	return 0;
}

static int ath10k_pci_request_irq(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	switch (ar_pci->oper_irq_mode) {
	case ATH10K_PCI_IRQ_LEGACY:
		return ath10k_pci_request_irq_legacy(ar);
	case ATH10K_PCI_IRQ_MSI:
		return ath10k_pci_request_irq_msi(ar);
	default:
		return -EINVAL;
	}
}

static void ath10k_pci_free_irq(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	free_irq(ar_pci->pdev->irq, ar);
}

void ath10k_pci_init_napi(struct ath10k *ar)
{
	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
		       ATH10K_NAPI_BUDGET);
}

static int ath10k_pci_init_irq(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	ath10k_pci_init_napi(ar);

	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
		ath10k_info(ar, "limiting irq mode to: %d\n",
			    ath10k_pci_irq_mode);

	/* Try MSI */
	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
		ret = pci_enable_msi(ar_pci->pdev);
		if (ret == 0)
			return 0;

		/* fall-through */
	}

	/* Try legacy irq
	 *
	 * A potential race occurs here: The CORE_BASE write
	 * depends on target correctly decoding AXI address but
	 * host won't know when target writes BAR to CORE_CTRL.
	 * This write might get lost if target has NOT written BAR.
	 * For now, fix the race by repeating the write in below
	 * synchronization checking.
	 */
	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;

	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);

	return 0;
}

static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
{
	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
			   0);
}

static int ath10k_pci_deinit_irq(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	switch (ar_pci->oper_irq_mode) {
	case ATH10K_PCI_IRQ_LEGACY:
		ath10k_pci_deinit_irq_legacy(ar);
		break;
	default:
		pci_disable_msi(ar_pci->pdev);
		break;
	}

	return 0;
}

int ath10k_pci_wait_for_target_init(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long timeout;
	u32 val;

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");

	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);

	do {
		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);

		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
			   val);

		/* target should never return this */
		if (val == 0xffffffff)
			continue;

		/* the device has crashed so don't bother trying anymore */
		if (val & FW_IND_EVENT_PENDING)
			break;

		if (val & FW_IND_INITIALIZED)
			break;

		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
			/* Fix potential race by repeating CORE_BASE writes */
			ath10k_pci_enable_legacy_irq(ar);

		mdelay(10);
	} while (time_before(jiffies, timeout));

	ath10k_pci_disable_and_clear_legacy_irq(ar);
	ath10k_pci_irq_msi_fw_mask(ar);

	if (val == 0xffffffff) {
		ath10k_err(ar, "failed to read device register, device is gone\n");
		return -EIO;
	}

	if (val & FW_IND_EVENT_PENDING) {
		ath10k_warn(ar, "device has crashed during init\n");
		return -ECOMM;
	}

	if (!(val & FW_IND_INITIALIZED)) {
		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
			   val);
		return -ETIMEDOUT;
	}

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
	return 0;
}

static int ath10k_pci_cold_reset(struct ath10k *ar)
{
	u32 val;

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");

	spin_lock_bh(&ar->data_lock);

	ar->stats.fw_cold_reset_counter++;

	spin_unlock_bh(&ar->data_lock);

	/* Put Target, including PCIe, into RESET. */
	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
	val |= 1;
	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);

	/* After writing into SOC_GLOBAL_RESET to put device into
	 * reset and pulling out of reset pcie may not be stable
	 * for any immediate pcie register access and cause bus error,
	 * add delay before any pcie access request to fix this issue.
	 */
	msleep(20);

	/* Pull Target, including PCIe, out of RESET. */
	val &= ~1;
	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);

	msleep(20);

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");

	return 0;
}

static int ath10k_pci_claim(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct pci_dev *pdev = ar_pci->pdev;
	int ret;

	pci_set_drvdata(pdev, ar);

	ret = pci_enable_device(pdev);
	if (ret) {
		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
		return ret;
	}

	ret = pci_request_region(pdev, BAR_NUM, "ath");
	if (ret) {
		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
			   ret);
		goto err_device;
	}

	/* Target expects 32 bit DMA. Enforce it. */
	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
	if (ret) {
		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
		goto err_region;
	}

	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (ret) {
		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
			   ret);
		goto err_region;
	}

	pci_set_master(pdev);

	/* Arrange for access to Target SoC registers. */
	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
	if (!ar_pci->mem) {
		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
		ret = -EIO;
		goto err_master;
	}

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
	return 0;

err_master:
	pci_clear_master(pdev);

err_region:
	pci_release_region(pdev, BAR_NUM);

err_device:
	pci_disable_device(pdev);

	return ret;
}

static void ath10k_pci_release(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct pci_dev *pdev = ar_pci->pdev;

	pci_iounmap(pdev, ar_pci->mem);
	pci_release_region(pdev, BAR_NUM);
	pci_clear_master(pdev);
	pci_disable_device(pdev);
}

static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
{
	const struct ath10k_pci_supp_chip *supp_chip;
	int i;
	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);

	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
		supp_chip = &ath10k_pci_supp_chips[i];

		if (supp_chip->dev_id == dev_id &&
		    supp_chip->rev_id == rev_id)
			return true;
	}

	return false;
}

int ath10k_pci_setup_resource(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	int ret;

	spin_lock_init(&ce->ce_lock);
	spin_lock_init(&ar_pci->ps_lock);
	mutex_init(&ar_pci->ce_diag_mutex);

	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);

	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);

	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
		ath10k_pci_override_ce_config(ar);

	ret = ath10k_pci_alloc_pipes(ar);
	if (ret) {
		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
			   ret);
		return ret;
	}

	return 0;
}

void ath10k_pci_release_resource(struct ath10k *ar)
{
	ath10k_pci_rx_retry_sync(ar);
	netif_napi_del(&ar->napi);
	ath10k_pci_ce_deinit(ar);
	ath10k_pci_free_pipes(ar);
}

static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
	.read32		= ath10k_bus_pci_read32,
	.write32	= ath10k_bus_pci_write32,
	.get_num_banks	= ath10k_pci_get_num_banks,
};

static int ath10k_pci_probe(struct pci_dev *pdev,
			    const struct pci_device_id *pci_dev)
{
	int ret = 0;
	struct ath10k *ar;
	struct ath10k_pci *ar_pci;
	enum ath10k_hw_rev hw_rev;
	struct ath10k_bus_params bus_params;
	bool pci_ps;
	int (*pci_soft_reset)(struct ath10k *ar);
	int (*pci_hard_reset)(struct ath10k *ar);
	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);

	switch (pci_dev->device) {
	case QCA988X_2_0_DEVICE_ID_UBNT:
	case QCA988X_2_0_DEVICE_ID:
		hw_rev = ATH10K_HW_QCA988X;
		pci_ps = false;
		pci_soft_reset = ath10k_pci_warm_reset;
		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
		break;
	case QCA9887_1_0_DEVICE_ID:
		hw_rev = ATH10K_HW_QCA9887;
		pci_ps = false;
		pci_soft_reset = ath10k_pci_warm_reset;
		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
		break;
	case QCA6164_2_1_DEVICE_ID:
	case QCA6174_2_1_DEVICE_ID:
		hw_rev = ATH10K_HW_QCA6174;
		pci_ps = true;
		pci_soft_reset = ath10k_pci_warm_reset;
		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
		break;
	case QCA99X0_2_0_DEVICE_ID:
		hw_rev = ATH10K_HW_QCA99X0;
		pci_ps = false;
		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
		break;
	case QCA9984_1_0_DEVICE_ID:
		hw_rev = ATH10K_HW_QCA9984;
		pci_ps = false;
		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
		break;
	case QCA9888_2_0_DEVICE_ID:
		hw_rev = ATH10K_HW_QCA9888;
		pci_ps = false;
		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
		break;
	case QCA9377_1_0_DEVICE_ID:
		hw_rev = ATH10K_HW_QCA9377;
		pci_ps = true;
		pci_soft_reset = ath10k_pci_warm_reset;
		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
		break;
	default:
		WARN_ON(1);
		return -ENOTSUPP;
	}

	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
				hw_rev, &ath10k_pci_hif_ops);
	if (!ar) {
		dev_err(&pdev->dev, "failed to allocate core\n");
		return -ENOMEM;
	}

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
		   pdev->vendor, pdev->device,
		   pdev->subsystem_vendor, pdev->subsystem_device);

	ar_pci = ath10k_pci_priv(ar);
	ar_pci->pdev = pdev;
	ar_pci->dev = &pdev->dev;
	ar_pci->ar = ar;
	ar->dev_id = pci_dev->device;
	ar_pci->pci_ps = pci_ps;
	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
	ar_pci->pci_soft_reset = pci_soft_reset;
	ar_pci->pci_hard_reset = pci_hard_reset;
	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
	ar->ce_priv = &ar_pci->ce;

	ar->id.vendor = pdev->vendor;
	ar->id.device = pdev->device;
	ar->id.subsystem_vendor = pdev->subsystem_vendor;
	ar->id.subsystem_device = pdev->subsystem_device;

	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);

	ret = ath10k_pci_setup_resource(ar);
	if (ret) {
		ath10k_err(ar, "failed to setup resource: %d\n", ret);
		goto err_core_destroy;
	}

	ret = ath10k_pci_claim(ar);
	if (ret) {
		ath10k_err(ar, "failed to claim device: %d\n", ret);
		goto err_free_pipes;
	}

	ret = ath10k_pci_force_wake(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
		goto err_sleep;
	}

	ath10k_pci_ce_deinit(ar);
	ath10k_pci_irq_disable(ar);

	ret = ath10k_pci_init_irq(ar);
	if (ret) {
		ath10k_err(ar, "failed to init irqs: %d\n", ret);
		goto err_sleep;
	}

	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);

	ret = ath10k_pci_request_irq(ar);
	if (ret) {
		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
		goto err_deinit_irq;
	}

	ret = ath10k_pci_chip_reset(ar);
	if (ret) {
		ath10k_err(ar, "failed to reset chip: %d\n", ret);
		goto err_free_irq;
	}

	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
	bus_params.link_can_suspend = true;
	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
	if (bus_params.chip_id == 0xffffffff) {
		ath10k_err(ar, "failed to get chip id\n");
		goto err_free_irq;
	}

	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
			   pdev->device, bus_params.chip_id);
		goto err_free_irq;
	}

	ret = ath10k_core_register(ar, &bus_params);
	if (ret) {
		ath10k_err(ar, "failed to register driver core: %d\n", ret);
		goto err_free_irq;
	}

	return 0;

err_free_irq:
	ath10k_pci_free_irq(ar);
	ath10k_pci_rx_retry_sync(ar);

err_deinit_irq:
	ath10k_pci_deinit_irq(ar);

err_sleep:
	ath10k_pci_sleep_sync(ar);
	ath10k_pci_release(ar);

err_free_pipes:
	ath10k_pci_free_pipes(ar);

err_core_destroy:
	ath10k_core_destroy(ar);

	return ret;
}

static void ath10k_pci_remove(struct pci_dev *pdev)
{
	struct ath10k *ar = pci_get_drvdata(pdev);
	struct ath10k_pci *ar_pci;

	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");

	if (!ar)
		return;

	ar_pci = ath10k_pci_priv(ar);

	if (!ar_pci)
		return;

	ath10k_core_unregister(ar);
	ath10k_pci_free_irq(ar);
	ath10k_pci_deinit_irq(ar);
	ath10k_pci_release_resource(ar);
	ath10k_pci_sleep_sync(ar);
	ath10k_pci_release(ar);
	ath10k_core_destroy(ar);
}

MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);

static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
{
	struct ath10k *ar = dev_get_drvdata(dev);
	int ret;

	ret = ath10k_pci_suspend(ar);
	if (ret)
		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);

	return ret;
}

static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
{
	struct ath10k *ar = dev_get_drvdata(dev);
	int ret;

	ret = ath10k_pci_resume(ar);
	if (ret)
		ath10k_warn(ar, "failed to resume hif: %d\n", ret);

	return ret;
}

static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
			 ath10k_pci_pm_suspend,
			 ath10k_pci_pm_resume);

static struct pci_driver ath10k_pci_driver = {
	.name = "ath10k_pci",
	.id_table = ath10k_pci_id_table,
	.probe = ath10k_pci_probe,
	.remove = ath10k_pci_remove,
#ifdef CONFIG_PM
	.driver.pm = &ath10k_pci_pm_ops,
#endif
};

static int __init ath10k_pci_init(void)
{
	int ret;

	ret = pci_register_driver(&ath10k_pci_driver);
	if (ret)
		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
		       ret);

	ret = ath10k_ahb_init();
	if (ret)
		printk(KERN_ERR "ahb init failed: %d\n", ret);

	return ret;
}
module_init(ath10k_pci_init);

static void __exit ath10k_pci_exit(void)
{
	pci_unregister_driver(&ath10k_pci_driver);
	ath10k_ahb_exit();
}

module_exit(ath10k_pci_exit);

MODULE_AUTHOR("Qualcomm Atheros");
MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
MODULE_LICENSE("Dual BSD/GPL");

/* QCA988x 2.0 firmware files */
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);

/* QCA9887 1.0 firmware files */
MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);

/* QCA6174 2.1 firmware files */
MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);

/* QCA6174 3.1 firmware files */
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);

/* QCA9377 1.0 firmware files */
MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE