#ifndef _CAN_DEV_H
#define _CAN_DEV_H
#include <linux/can.h>
#include <linux/can/error.h>
#include <linux/can/led.h>
#include <linux/can/netlink.h>
#include <linux/can/skb.h>
#include <linux/netdevice.h>
enum can_mode {
CAN_MODE_STOP = 0,
CAN_MODE_START,
CAN_MODE_SLEEP
};
struct can_priv {
struct net_device *dev;
struct can_device_stats can_stats;
struct can_bittiming bittiming, data_bittiming;
const struct can_bittiming_const *bittiming_const,
*data_bittiming_const;
const u16 *termination_const;
unsigned int termination_const_cnt;
u16 termination;
const u32 *bitrate_const;
unsigned int bitrate_const_cnt;
const u32 *data_bitrate_const;
unsigned int data_bitrate_const_cnt;
u32 bitrate_max;
struct can_clock clock;
enum can_state state;
u32 ctrlmode;
u32 ctrlmode_supported;
u32 ctrlmode_static;
int restart_ms;
struct delayed_work restart_work;
int (*do_set_bittiming)(struct net_device *dev);
int (*do_set_data_bittiming)(struct net_device *dev);
int (*do_set_mode)(struct net_device *dev, enum can_mode mode);
int (*do_set_termination)(struct net_device *dev, u16 term);
int (*do_get_state)(const struct net_device *dev,
enum can_state *state);
int (*do_get_berr_counter)(const struct net_device *dev,
struct can_berr_counter *bec);
unsigned int echo_skb_max;
struct sk_buff **echo_skb;
#ifdef CONFIG_CAN_LEDS
struct led_trigger *tx_led_trig;
char tx_led_trig_name[CAN_LED_NAME_SZ];
struct led_trigger *rx_led_trig;
char rx_led_trig_name[CAN_LED_NAME_SZ];
struct led_trigger *rxtx_led_trig;
char rxtx_led_trig_name[CAN_LED_NAME_SZ];
#endif
};
#define CAN_SYNC_SEG 1
static inline unsigned int can_bit_time(const struct can_bittiming *bt)
{
return CAN_SYNC_SEG + bt->prop_seg + bt->phase_seg1 + bt->phase_seg2;
}
#define can_cc_dlc2len(dlc) (min_t(u8, (dlc), CAN_MAX_DLEN))
static inline bool can_skb_headroom_valid(struct net_device *dev,
struct sk_buff *skb)
{
if (WARN_ON_ONCE(skb_headroom(skb) < sizeof(struct can_skb_priv)))
return false;
if (skb->ip_summed == CHECKSUM_NONE) {
can_skb_prv(skb)->ifindex = dev->ifindex;
can_skb_prv(skb)->skbcnt = 0;
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (dev->flags & IFF_ECHO)
skb->pkt_type = PACKET_LOOPBACK;
else
skb->pkt_type = PACKET_HOST;
skb_reset_mac_header(skb);
skb_reset_network_header(skb);
skb_reset_transport_header(skb);
}
return true;
}
static inline bool can_dropped_invalid_skb(struct net_device *dev,
struct sk_buff *skb)
{
const struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
if (skb->protocol == htons(ETH_P_CAN)) {
if (unlikely(skb->len != CAN_MTU ||
cfd->len > CAN_MAX_DLEN))
goto inval_skb;
} else if (skb->protocol == htons(ETH_P_CANFD)) {
if (unlikely(skb->len != CANFD_MTU ||
cfd->len > CANFD_MAX_DLEN))
goto inval_skb;
} else
goto inval_skb;
if (!can_skb_headroom_valid(dev, skb))
goto inval_skb;
return false;
inval_skb:
kfree_skb(skb);
dev->stats.tx_dropped++;
return true;
}
static inline bool can_is_canfd_skb(const struct sk_buff *skb)
{
return skb->len == CANFD_MTU;
}
static inline u8 can_get_cc_dlc(const struct can_frame *cf, const u32 ctrlmode)
{
if ((ctrlmode & CAN_CTRLMODE_CC_LEN8_DLC) &&
(cf->len == CAN_MAX_DLEN) &&
(cf->len8_dlc > CAN_MAX_DLEN && cf->len8_dlc <= CAN_MAX_RAW_DLC))
return cf->len8_dlc;
return cf->len;
}
static inline void can_frame_set_cc_len(struct can_frame *cf, const u8 dlc,
const u32 ctrlmode)
{
if (ctrlmode & CAN_CTRLMODE_CC_LEN8_DLC && dlc > CAN_MAX_DLEN)
cf->len8_dlc = dlc;
cf->len = can_cc_dlc2len(dlc);
}
static inline void can_set_static_ctrlmode(struct net_device *dev,
u32 static_mode)
{
struct can_priv *priv = netdev_priv(dev);
priv->ctrlmode = static_mode;
priv->ctrlmode_static = static_mode;
if (static_mode & CAN_CTRLMODE_FD)
dev->mtu = CANFD_MTU;
}
u8 can_fd_dlc2len(u8 dlc);
u8 can_fd_len2dlc(u8 len);
struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
unsigned int txqs, unsigned int rxqs);
#define alloc_candev(sizeof_priv, echo_skb_max) \
alloc_candev_mqs(sizeof_priv, echo_skb_max, 1, 1)
#define alloc_candev_mq(sizeof_priv, echo_skb_max, count) \
alloc_candev_mqs(sizeof_priv, echo_skb_max, count, count)
void free_candev(struct net_device *dev);
struct can_priv *safe_candev_priv(struct net_device *dev);
int open_candev(struct net_device *dev);
void close_candev(struct net_device *dev);
int can_change_mtu(struct net_device *dev, int new_mtu);
int register_candev(struct net_device *dev);
void unregister_candev(struct net_device *dev);
int can_restart_now(struct net_device *dev);
void can_bus_off(struct net_device *dev);
void can_change_state(struct net_device *dev, struct can_frame *cf,
enum can_state tx_state, enum can_state rx_state);
int can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
unsigned int idx);
struct sk_buff *__can_get_echo_skb(struct net_device *dev, unsigned int idx,
u8 *len_ptr);
unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx);
void can_free_echo_skb(struct net_device *dev, unsigned int idx);
#ifdef CONFIG_OF
void of_can_transceiver(struct net_device *dev);
#else
static inline void of_can_transceiver(struct net_device *dev) { }
#endif
struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf);
struct sk_buff *alloc_canfd_skb(struct net_device *dev,
struct canfd_frame **cfd);
struct sk_buff *alloc_can_err_skb(struct net_device *dev,
struct can_frame **cf);
#endif /* !_CAN_DEV_H */