// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Afatech AF9033 demodulator driver
 *
 * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
 * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
 */

#include "af9033_priv.h"

struct af9033_dev {
	struct i2c_client *client;
	struct regmap *regmap;
	struct dvb_frontend fe;
	struct af9033_config cfg;
	bool is_af9035;
	bool is_it9135;

	u32 bandwidth_hz;
	bool ts_mode_parallel;
	bool ts_mode_serial;

	enum fe_status fe_status;
	u64 post_bit_error_prev; /* for old read_ber we return (curr - prev) */
	u64 post_bit_error;
	u64 post_bit_count;
	u64 error_block_count;
	u64 total_block_count;
};

/* Write reg val table using reg addr auto increment */
static int af9033_wr_reg_val_tab(struct af9033_dev *dev,
				 const struct reg_val *tab, int tab_len)
{
	struct i2c_client *client = dev->client;
#define MAX_TAB_LEN 212
	int ret, i, j;
	u8 buf[1 + MAX_TAB_LEN];

	dev_dbg(&client->dev, "tab_len=%d\n", tab_len);

	if (tab_len > sizeof(buf)) {
		dev_warn(&client->dev, "tab len %d is too big\n", tab_len);
		return -EINVAL;
	}

	for (i = 0, j = 0; i < tab_len; i++) {
		buf[j] = tab[i].val;

		if (i == tab_len - 1 || tab[i].reg != tab[i + 1].reg - 1) {
			ret = regmap_bulk_write(dev->regmap, tab[i].reg - j,
						buf, j + 1);
			if (ret)
				goto err;

			j = 0;
		} else {
			j++;
		}
	}

	return 0;
err:
	dev_dbg(&client->dev, "failed=%d\n", ret);
	return ret;
}

static int af9033_init(struct dvb_frontend *fe)
{
	struct af9033_dev *dev = fe->demodulator_priv;
	struct i2c_client *client = dev->client;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	int ret, i, len;
	unsigned int utmp;
	const struct reg_val *init;
	u8 buf[4];
	struct reg_val_mask tab[] = {
		{ 0x80fb24, 0x00, 0x08 },
		{ 0x80004c, 0x00, 0xff },
		{ 0x00f641, dev->cfg.tuner, 0xff },
		{ 0x80f5ca, 0x01, 0x01 },
		{ 0x80f715, 0x01, 0x01 },
		{ 0x00f41f, 0x04, 0x04 },
		{ 0x00f41a, 0x01, 0x01 },
		{ 0x80f731, 0x00, 0x01 },
		{ 0x00d91e, 0x00, 0x01 },
		{ 0x00d919, 0x00, 0x01 },
		{ 0x80f732, 0x00, 0x01 },
		{ 0x00d91f, 0x00, 0x01 },
		{ 0x00d91a, 0x00, 0x01 },
		{ 0x80f730, 0x00, 0x01 },
		{ 0x80f778, 0x00, 0xff },
		{ 0x80f73c, 0x01, 0x01 },
		{ 0x80f776, 0x00, 0x01 },
		{ 0x00d8fd, 0x01, 0xff },
		{ 0x00d830, 0x01, 0xff },
		{ 0x00d831, 0x00, 0xff },
		{ 0x00d832, 0x00, 0xff },
		{ 0x80f985, dev->ts_mode_serial, 0x01 },
		{ 0x80f986, dev->ts_mode_parallel, 0x01 },
		{ 0x00d827, 0x00, 0xff },
		{ 0x00d829, 0x00, 0xff },
		{ 0x800045, dev->cfg.adc_multiplier, 0xff },
	};

	dev_dbg(&client->dev, "\n");

	/* Main clk control */
	utmp = div_u64((u64)dev->cfg.clock * 0x80000, 1000000);
	buf[0] = (utmp >>  0) & 0xff;
	buf[1] = (utmp >>  8) & 0xff;
	buf[2] = (utmp >> 16) & 0xff;
	buf[3] = (utmp >> 24) & 0xff;
	ret = regmap_bulk_write(dev->regmap, 0x800025, buf, 4);
	if (ret)
		goto err;

	dev_dbg(&client->dev, "clk=%u clk_cw=%08x\n", dev->cfg.clock, utmp);

	/* ADC clk control */
	for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
		if (clock_adc_lut[i].clock == dev->cfg.clock)
			break;
	}
	if (i == ARRAY_SIZE(clock_adc_lut)) {
		dev_err(&client->dev, "Couldn't find ADC config for clock %d\n",
			dev->cfg.clock);
		goto err;
	}

	utmp = div_u64((u64)clock_adc_lut[i].adc * 0x80000, 1000000);
	buf[0] = (utmp >>  0) & 0xff;
	buf[1] = (utmp >>  8) & 0xff;
	buf[2] = (utmp >> 16) & 0xff;
	ret = regmap_bulk_write(dev->regmap, 0x80f1cd, buf, 3);
	if (ret)
		goto err;

	dev_dbg(&client->dev, "adc=%u adc_cw=%06x\n",
		clock_adc_lut[i].adc, utmp);

	/* Config register table */
	for (i = 0; i < ARRAY_SIZE(tab); i++) {
		ret = regmap_update_bits(dev->regmap, tab[i].reg, tab[i].mask,
					 tab[i].val);
		if (ret)
			goto err;
	}

	/* Demod clk output */
	if (dev->cfg.dyn0_clk) {
		ret = regmap_write(dev->regmap, 0x80fba8, 0x00);
		if (ret)
			goto err;
	}

	/* TS interface */
	if (dev->cfg.ts_mode == AF9033_TS_MODE_USB) {
		ret = regmap_update_bits(dev->regmap, 0x80f9a5, 0x01, 0x00);
		if (ret)
			goto err;
		ret = regmap_update_bits(dev->regmap, 0x80f9b5, 0x01, 0x01);
		if (ret)
			goto err;
	} else {
		ret = regmap_update_bits(dev->regmap, 0x80f990, 0x01, 0x00);
		if (ret)
			goto err;
		ret = regmap_update_bits(dev->regmap, 0x80f9b5, 0x01, 0x00);
		if (ret)
			goto err;
	}

	/* Demod core settings */
	dev_dbg(&client->dev, "load ofsm settings\n");
	switch (dev->cfg.tuner) {
	case AF9033_TUNER_IT9135_38:
	case AF9033_TUNER_IT9135_51:
	case AF9033_TUNER_IT9135_52:
		len = ARRAY_SIZE(ofsm_init_it9135_v1);
		init = ofsm_init_it9135_v1;
		break;
	case AF9033_TUNER_IT9135_60:
	case AF9033_TUNER_IT9135_61:
	case AF9033_TUNER_IT9135_62:
		len = ARRAY_SIZE(ofsm_init_it9135_v2);
		init = ofsm_init_it9135_v2;
		break;
	default:
		len = ARRAY_SIZE(ofsm_init);
		init = ofsm_init;
		break;
	}

	ret = af9033_wr_reg_val_tab(dev, init, len);
	if (ret)
		goto err;

	/* Demod tuner specific settings */
	dev_dbg(&client->dev, "load tuner specific settings\n");
	switch (dev->cfg.tuner) {
	case AF9033_TUNER_TUA9001:
		len = ARRAY_SIZE(tuner_init_tua9001);
		init = tuner_init_tua9001;
		break;
	case AF9033_TUNER_FC0011:
		len = ARRAY_SIZE(tuner_init_fc0011);
		init = tuner_init_fc0011;
		break;
	case AF9033_TUNER_MXL5007T:
		len = ARRAY_SIZE(tuner_init_mxl5007t);
		init = tuner_init_mxl5007t;
		break;
	case AF9033_TUNER_TDA18218:
		len = ARRAY_SIZE(tuner_init_tda18218);
		init = tuner_init_tda18218;
		break;
	case AF9033_TUNER_FC2580:
		len = ARRAY_SIZE(tuner_init_fc2580);
		init = tuner_init_fc2580;
		break;
	case AF9033_TUNER_FC0012:
		len = ARRAY_SIZE(tuner_init_fc0012);
		init = tuner_init_fc0012;
		break;
	case AF9033_TUNER_IT9135_38:
		len = ARRAY_SIZE(tuner_init_it9135_38);
		init = tuner_init_it9135_38;
		break;
	case AF9033_TUNER_IT9135_51:
		len = ARRAY_SIZE(tuner_init_it9135_51);
		init = tuner_init_it9135_51;
		break;
	case AF9033_TUNER_IT9135_52:
		len = ARRAY_SIZE(tuner_init_it9135_52);
		init = tuner_init_it9135_52;
		break;
	case AF9033_TUNER_IT9135_60:
		len = ARRAY_SIZE(tuner_init_it9135_60);
		init = tuner_init_it9135_60;
		break;
	case AF9033_TUNER_IT9135_61:
		len = ARRAY_SIZE(tuner_init_it9135_61);
		init = tuner_init_it9135_61;
		break;
	case AF9033_TUNER_IT9135_62:
		len = ARRAY_SIZE(tuner_init_it9135_62);
		init = tuner_init_it9135_62;
		break;
	default:
		dev_dbg(&client->dev, "unsupported tuner ID=%d\n",
			dev->cfg.tuner);
		ret = -ENODEV;
		goto err;
	}

	ret = af9033_wr_reg_val_tab(dev, init, len);
	if (ret)
		goto err;

	if (dev->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
		ret = regmap_update_bits(dev->regmap, 0x00d91c, 0x01, 0x01);
		if (ret)
			goto err;
		ret = regmap_update_bits(dev->regmap, 0x00d917, 0x01, 0x00);
		if (ret)
			goto err;
		ret = regmap_update_bits(dev->regmap, 0x00d916, 0x01, 0x00);
		if (ret)
			goto err;
	}

	switch (dev->cfg.tuner) {
	case AF9033_TUNER_IT9135_60:
	case AF9033_TUNER_IT9135_61:
	case AF9033_TUNER_IT9135_62:
		ret = regmap_write(dev->regmap, 0x800000, 0x01);
		if (ret)
			goto err;
	}

	dev->bandwidth_hz = 0; /* Force to program all parameters */
	/* Init stats here in order signal app which stats are supported */
	c->strength.len = 1;
	c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
	c->cnr.len = 1;
	c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
	c->block_count.len = 1;
	c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
	c->block_error.len = 1;
	c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
	c->post_bit_count.len = 1;
	c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
	c->post_bit_error.len = 1;
	c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;

	return 0;
err:
	dev_dbg(&client->dev, "failed=%d\n", ret);
	return ret;
}

static int af9033_sleep(struct dvb_frontend *fe)
{
	struct af9033_dev *dev = fe->demodulator_priv;
	struct i2c_client *client = dev->client;
	int ret;
	unsigned int utmp;

	dev_dbg(&client->dev, "\n");

	ret = regmap_write(dev->regmap, 0x80004c, 0x01);
	if (ret)
		goto err;
	ret = regmap_write(dev->regmap, 0x800000, 0x00);
	if (ret)
		goto err;
	ret = regmap_read_poll_timeout(dev->regmap, 0x80004c, utmp, utmp == 0,
				       5000, 1000000);
	if (ret)
		goto err;
	ret = regmap_update_bits(dev->regmap, 0x80fb24, 0x08, 0x08);
	if (ret)
		goto err;

	/* Prevent current leak by setting TS interface to parallel mode */
	if (dev->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
		/* Enable parallel TS */
		ret = regmap_update_bits(dev->regmap, 0x00d917, 0x01, 0x00);
		if (ret)
			goto err;
		ret = regmap_update_bits(dev->regmap, 0x00d916, 0x01, 0x01);
		if (ret)
			goto err;
	}

	return 0;
err:
	dev_dbg(&client->dev, "failed=%d\n", ret);
	return ret;
}

static int af9033_get_tune_settings(struct dvb_frontend *fe,
				    struct dvb_frontend_tune_settings *fesettings)
{
	/* 800 => 2000 because IT9135 v2 is slow to gain lock */
	fesettings->min_delay_ms = 2000;
	fesettings->step_size = 0;
	fesettings->max_drift = 0;

	return 0;
}

static int af9033_set_frontend(struct dvb_frontend *fe)
{
	struct af9033_dev *dev = fe->demodulator_priv;
	struct i2c_client *client = dev->client;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	int ret, i;
	unsigned int utmp, adc_freq;
	u8 tmp, buf[3], bandwidth_reg_val;
	u32 if_frequency;

	dev_dbg(&client->dev, "frequency=%u bandwidth_hz=%u\n",
		c->frequency, c->bandwidth_hz);

	/* Check bandwidth */
	switch (c->bandwidth_hz) {
	case 6000000:
		bandwidth_reg_val = 0x00;
		break;
	case 7000000:
		bandwidth_reg_val = 0x01;
		break;
	case 8000000:
		bandwidth_reg_val = 0x02;
		break;
	default:
		dev_dbg(&client->dev, "invalid bandwidth_hz\n");
		ret = -EINVAL;
		goto err;
	}

	/* Program tuner */
	if (fe->ops.tuner_ops.set_params)
		fe->ops.tuner_ops.set_params(fe);

	/* Coefficients */
	if (c->bandwidth_hz != dev->bandwidth_hz) {
		for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
			if (coeff_lut[i].clock == dev->cfg.clock &&
			    coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
				break;
			}
		}
		if (i == ARRAY_SIZE(coeff_lut)) {
			dev_err(&client->dev,
				"Couldn't find config for clock %u\n",
				dev->cfg.clock);
			ret = -EINVAL;
			goto err;
		}

		ret = regmap_bulk_write(dev->regmap, 0x800001, coeff_lut[i].val,
					sizeof(coeff_lut[i].val));
		if (ret)
			goto err;
	}

	/* IF frequency control */
	if (c->bandwidth_hz != dev->bandwidth_hz) {
		for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
			if (clock_adc_lut[i].clock == dev->cfg.clock)
				break;
		}
		if (i == ARRAY_SIZE(clock_adc_lut)) {
			dev_err(&client->dev,
				"Couldn't find ADC clock for clock %u\n",
				dev->cfg.clock);
			ret = -EINVAL;
			goto err;
		}
		adc_freq = clock_adc_lut[i].adc;

		if (dev->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X)
			adc_freq = 2 * adc_freq;

		/* Get used IF frequency */
		if (fe->ops.tuner_ops.get_if_frequency)
			fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
		else
			if_frequency = 0;

		utmp = DIV_ROUND_CLOSEST_ULL((u64)if_frequency * 0x800000,
					     adc_freq);

		if (!dev->cfg.spec_inv && if_frequency)
			utmp = 0x800000 - utmp;

		buf[0] = (utmp >>  0) & 0xff;
		buf[1] = (utmp >>  8) & 0xff;
		buf[2] = (utmp >> 16) & 0xff;
		ret = regmap_bulk_write(dev->regmap, 0x800029, buf, 3);
		if (ret)
			goto err;

		dev_dbg(&client->dev, "if_frequency_cw=%06x\n", utmp);

		dev->bandwidth_hz = c->bandwidth_hz;
	}

	ret = regmap_update_bits(dev->regmap, 0x80f904, 0x03,
				 bandwidth_reg_val);
	if (ret)
		goto err;
	ret = regmap_write(dev->regmap, 0x800040, 0x00);
	if (ret)
		goto err;
	ret = regmap_write(dev->regmap, 0x800047, 0x00);
	if (ret)
		goto err;
	ret = regmap_update_bits(dev->regmap, 0x80f999, 0x01, 0x00);
	if (ret)
		goto err;

	if (c->frequency <= 230000000)
		tmp = 0x00; /* VHF */
	else
		tmp = 0x01; /* UHF */

	ret = regmap_write(dev->regmap, 0x80004b, tmp);
	if (ret)
		goto err;
	/* Reset FSM */
	ret = regmap_write(dev->regmap, 0x800000, 0x00);
	if (ret)
		goto err;

	return 0;
err:
	dev_dbg(&client->dev, "failed=%d\n", ret);
	return ret;
}

static int af9033_get_frontend(struct dvb_frontend *fe,
			       struct dtv_frontend_properties *c)
{
	struct af9033_dev *dev = fe->demodulator_priv;
	struct i2c_client *client = dev->client;
	int ret;
	u8 buf[8];

	dev_dbg(&client->dev, "\n");

	/* Read all needed TPS registers */
	ret = regmap_bulk_read(dev->regmap, 0x80f900, buf, 8);
	if (ret)
		goto err;

	switch ((buf[0] >> 0) & 3) {
	case 0:
		c->transmission_mode = TRANSMISSION_MODE_2K;
		break;
	case 1:
		c->transmission_mode = TRANSMISSION_MODE_8K;
		break;
	}

	switch ((buf[1] >> 0) & 3) {
	case 0:
		c->guard_interval = GUARD_INTERVAL_1_32;
		break;
	case 1:
		c->guard_interval = GUARD_INTERVAL_1_16;
		break;
	case 2:
		c->guard_interval = GUARD_INTERVAL_1_8;
		break;
	case 3:
		c->guard_interval = GUARD_INTERVAL_1_4;
		break;
	}

	switch ((buf[2] >> 0) & 7) {
	case 0:
		c->hierarchy = HIERARCHY_NONE;
		break;
	case 1:
		c->hierarchy = HIERARCHY_1;
		break;
	case 2:
		c->hierarchy = HIERARCHY_2;
		break;
	case 3:
		c->hierarchy = HIERARCHY_4;
		break;
	}

	switch ((buf[3] >> 0) & 3) {
	case 0:
		c->modulation = QPSK;
		break;
	case 1:
		c->modulation = QAM_16;
		break;
	case 2:
		c->modulation = QAM_64;
		break;
	}

	switch ((buf[4] >> 0) & 3) {
	case 0:
		c->bandwidth_hz = 6000000;
		break;
	case 1:
		c->bandwidth_hz = 7000000;
		break;
	case 2:
		c->bandwidth_hz = 8000000;
		break;
	}

	switch ((buf[6] >> 0) & 7) {
	case 0:
		c->code_rate_HP = FEC_1_2;
		break;
	case 1:
		c->code_rate_HP = FEC_2_3;
		break;
	case 2:
		c->code_rate_HP = FEC_3_4;
		break;
	case 3:
		c->code_rate_HP = FEC_5_6;
		break;
	case 4:
		c->code_rate_HP = FEC_7_8;
		break;
	case 5:
		c->code_rate_HP = FEC_NONE;
		break;
	}

	switch ((buf[7] >> 0) & 7) {
	case 0:
		c->code_rate_LP = FEC_1_2;
		break;
	case 1:
		c->code_rate_LP = FEC_2_3;
		break;
	case 2:
		c->code_rate_LP = FEC_3_4;
		break;
	case 3:
		c->code_rate_LP = FEC_5_6;
		break;
	case 4:
		c->code_rate_LP = FEC_7_8;
		break;
	case 5:
		c->code_rate_LP = FEC_NONE;
		break;
	}

	return 0;
err:
	dev_dbg(&client->dev, "failed=%d\n", ret);
	return ret;
}

static int af9033_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
	struct af9033_dev *dev = fe->demodulator_priv;
	struct i2c_client *client = dev->client;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	int ret, tmp = 0;
	u8 buf[7];
	unsigned int utmp, utmp1;

	dev_dbg(&client->dev, "\n");

	*status = 0;

	/* Radio channel status: 0=no result, 1=has signal, 2=no signal */
	ret = regmap_read(dev->regmap, 0x800047, &utmp);
	if (ret)
		goto err;

	/* Has signal */
	if (utmp == 0x01)
		*status |= FE_HAS_SIGNAL;

	if (utmp != 0x02) {
		/* TPS lock */
		ret = regmap_read(dev->regmap, 0x80f5a9, &utmp);
		if (ret)
			goto err;

		if ((utmp >> 0) & 0x01)
			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
					FE_HAS_VITERBI;

		/* Full lock */
		ret = regmap_read(dev->regmap, 0x80f999, &utmp);
		if (ret)
			goto err;

		if ((utmp >> 0) & 0x01)
			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
					FE_HAS_VITERBI | FE_HAS_SYNC |
					FE_HAS_LOCK;
	}

	dev->fe_status = *status;

	/* Signal strength */
	if (dev->fe_status & FE_HAS_SIGNAL) {
		if (dev->is_af9035) {
			ret = regmap_read(dev->regmap, 0x80004a, &utmp);
			if (ret)
				goto err;
			tmp = -utmp * 1000;
		} else {
			ret = regmap_read(dev->regmap, 0x8000f7, &utmp);
			if (ret)
				goto err;
			tmp = (utmp - 100) * 1000;
		}

		c->strength.len = 1;
		c->strength.stat[0].scale = FE_SCALE_DECIBEL;
		c->strength.stat[0].svalue = tmp;
	} else {
		c->strength.len = 1;
		c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
	}

	/* CNR */
	if (dev->fe_status & FE_HAS_VITERBI) {
		/* Read raw SNR value */
		ret = regmap_bulk_read(dev->regmap, 0x80002c, buf, 3);
		if (ret)
			goto err;

		utmp1 = buf[2] << 16 | buf[1] << 8 | buf[0] << 0;

		/* Read superframe number */
		ret = regmap_read(dev->regmap, 0x80f78b, &utmp);
		if (ret)
			goto err;

		if (utmp)
			utmp1 /= utmp;

		/* Read current transmission mode */
		ret = regmap_read(dev->regmap, 0x80f900, &utmp);
		if (ret)
			goto err;

		switch ((utmp >> 0) & 3) {
		case 0:
			/* 2k */
			utmp1 *= 4;
			break;
		case 1:
			/* 8k */
			utmp1 *= 1;
			break;
		case 2:
			/* 4k */
			utmp1 *= 2;
			break;
		default:
			utmp1 *= 0;
			break;
		}

		/* Read current modulation */
		ret = regmap_read(dev->regmap, 0x80f903, &utmp);
		if (ret)
			goto err;

		switch ((utmp >> 0) & 3) {
		case 0:
			/*
			 * QPSK
			 * CNR[dB] 13 * -log10((1690000 - value) / value) + 2.6
			 * value [653799, 1689999], 2.6 / 13 = 3355443
			 */
			utmp1 = clamp(utmp1, 653799U, 1689999U);
			utmp1 = ((u64)(intlog10(utmp1)
				 - intlog10(1690000 - utmp1)
				 + 3355443) * 13 * 1000) >> 24;
			break;
		case 1:
			/*
			 * QAM-16
			 * CNR[dB] 6 * log10((value - 370000) / (828000 - value)) + 15.7
			 * value [371105, 827999], 15.7 / 6 = 43900382
			 */
			utmp1 = clamp(utmp1, 371105U, 827999U);
			utmp1 = ((u64)(intlog10(utmp1 - 370000)
				 - intlog10(828000 - utmp1)
				 + 43900382) * 6 * 1000) >> 24;
			break;
		case 2:
			/*
			 * QAM-64
			 * CNR[dB] 8 * log10((value - 193000) / (425000 - value)) + 23.8
			 * value [193246, 424999], 23.8 / 8 = 49912218
			 */
			utmp1 = clamp(utmp1, 193246U, 424999U);
			utmp1 = ((u64)(intlog10(utmp1 - 193000)
				 - intlog10(425000 - utmp1)
				 + 49912218) * 8 * 1000) >> 24;
			break;
		default:
			utmp1 = 0;
			break;
		}

		dev_dbg(&client->dev, "cnr=%u\n", utmp1);

		c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
		c->cnr.stat[0].svalue = utmp1;
	} else {
		c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
	}

	/* UCB/PER/BER */
	if (dev->fe_status & FE_HAS_LOCK) {
		/* Outer FEC, 204 byte packets */
		u16 abort_packet_count, rsd_packet_count;
		/* Inner FEC, bits */
		u32 rsd_bit_err_count;

		/*
		 * Packet count used for measurement is 10000
		 * (rsd_packet_count). Maybe it should be increased?
		 */

		ret = regmap_bulk_read(dev->regmap, 0x800032, buf, 7);
		if (ret)
			goto err;

		abort_packet_count = (buf[1] << 8) | (buf[0] << 0);
		rsd_bit_err_count = (buf[4] << 16) | (buf[3] << 8) | buf[2];
		rsd_packet_count = (buf[6] << 8) | (buf[5] << 0);

		dev->error_block_count += abort_packet_count;
		dev->total_block_count += rsd_packet_count;
		dev->post_bit_error += rsd_bit_err_count;
		dev->post_bit_count += rsd_packet_count * 204 * 8;

		c->block_count.len = 1;
		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
		c->block_count.stat[0].uvalue = dev->total_block_count;

		c->block_error.len = 1;
		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
		c->block_error.stat[0].uvalue = dev->error_block_count;

		c->post_bit_count.len = 1;
		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
		c->post_bit_count.stat[0].uvalue = dev->post_bit_count;

		c->post_bit_error.len = 1;
		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
		c->post_bit_error.stat[0].uvalue = dev->post_bit_error;
	}

	return 0;
err:
	dev_dbg(&client->dev, "failed=%d\n", ret);
	return ret;
}

static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
{
	struct af9033_dev *dev = fe->demodulator_priv;
	struct i2c_client *client = dev->client;
	struct dtv_frontend_properties *c = &dev->fe.dtv_property_cache;
	int ret;
	unsigned int utmp;

	dev_dbg(&client->dev, "\n");

	/* Use DVBv5 CNR */
	if (c->cnr.stat[0].scale == FE_SCALE_DECIBEL) {
		/* Return 0.1 dB for AF9030 and 0-0xffff for IT9130. */
		if (dev->is_af9035) {
			/* 1000x => 10x (0.1 dB) */
			*snr = div_s64(c->cnr.stat[0].svalue, 100);
		} else {
			/* 1000x => 1x (1 dB) */
			*snr = div_s64(c->cnr.stat[0].svalue, 1000);

			/* Read current modulation */
			ret = regmap_read(dev->regmap, 0x80f903, &utmp);
			if (ret)
				goto err;

			/* scale value to 0x0000-0xffff */
			switch ((utmp >> 0) & 3) {
			case 0:
				*snr = *snr * 0xffff / 23;
				break;
			case 1:
				*snr = *snr * 0xffff / 26;
				break;
			case 2:
				*snr = *snr * 0xffff / 32;
				break;
			default:
				goto err;
			}
		}
	} else {
		*snr = 0;
	}

	return 0;
err:
	dev_dbg(&client->dev, "failed=%d\n", ret);
	return ret;
}

static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
	struct af9033_dev *dev = fe->demodulator_priv;
	struct i2c_client *client = dev->client;
	struct dtv_frontend_properties *c = &dev->fe.dtv_property_cache;
	int ret, tmp, power_real;
	unsigned int utmp;
	u8 gain_offset, buf[7];

	dev_dbg(&client->dev, "\n");

	if (dev->is_af9035) {
		/* Read signal strength of 0-100 scale */
		ret = regmap_read(dev->regmap, 0x800048, &utmp);
		if (ret)
			goto err;

		/* Scale value to 0x0000-0xffff */
		*strength = utmp * 0xffff / 100;
	} else {
		ret = regmap_read(dev->regmap, 0x8000f7, &utmp);
		if (ret)
			goto err;

		ret = regmap_bulk_read(dev->regmap, 0x80f900, buf, 7);
		if (ret)
			goto err;

		if (c->frequency <= 300000000)
			gain_offset = 7; /* VHF */
		else
			gain_offset = 4; /* UHF */

		power_real = (utmp - 100 - gain_offset) -
			power_reference[((buf[3] >> 0) & 3)][((buf[6] >> 0) & 7)];

		if (power_real < -15)
			tmp = 0;
		else if ((power_real >= -15) && (power_real < 0))
			tmp = (2 * (power_real + 15)) / 3;
		else if ((power_real >= 0) && (power_real < 20))
			tmp = 4 * power_real + 10;
		else if ((power_real >= 20) && (power_real < 35))
			tmp = (2 * (power_real - 20)) / 3 + 90;
		else
			tmp = 100;

		/* Scale value to 0x0000-0xffff */
		*strength = tmp * 0xffff / 100;
	}

	return 0;
err:
	dev_dbg(&client->dev, "failed=%d\n", ret);
	return ret;
}

static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
{
	struct af9033_dev *dev = fe->demodulator_priv;

	*ber = (dev->post_bit_error - dev->post_bit_error_prev);
	dev->post_bit_error_prev = dev->post_bit_error;

	return 0;
}

static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
	struct af9033_dev *dev = fe->demodulator_priv;

	*ucblocks = dev->error_block_count;

	return 0;
}

static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
	struct af9033_dev *dev = fe->demodulator_priv;
	struct i2c_client *client = dev->client;
	int ret;

	dev_dbg(&client->dev, "enable=%d\n", enable);

	ret = regmap_update_bits(dev->regmap, 0x00fa04, 0x01, enable);
	if (ret)
		goto err;

	return 0;
err:
	dev_dbg(&client->dev, "failed=%d\n", ret);
	return ret;
}

static int af9033_pid_filter_ctrl(struct dvb_frontend *fe, int onoff)
{
	struct af9033_dev *dev = fe->demodulator_priv;
	struct i2c_client *client = dev->client;
	int ret;

	dev_dbg(&client->dev, "onoff=%d\n", onoff);

	ret = regmap_update_bits(dev->regmap, 0x80f993, 0x01, onoff);
	if (ret)
		goto err;

	return 0;
err:
	dev_dbg(&client->dev, "failed=%d\n", ret);
	return ret;
}

static int af9033_pid_filter(struct dvb_frontend *fe, int index, u16 pid,
			     int onoff)
{
	struct af9033_dev *dev = fe->demodulator_priv;
	struct i2c_client *client = dev->client;
	int ret;
	u8 wbuf[2] = {(pid >> 0) & 0xff, (pid >> 8) & 0xff};

	dev_dbg(&client->dev, "index=%d pid=%04x onoff=%d\n",
		index, pid, onoff);

	if (pid > 0x1fff)
		return 0;

	ret = regmap_bulk_write(dev->regmap, 0x80f996, wbuf, 2);
	if (ret)
		goto err;
	ret = regmap_write(dev->regmap, 0x80f994, onoff);
	if (ret)
		goto err;
	ret = regmap_write(dev->regmap, 0x80f995, index);
	if (ret)
		goto err;

	return 0;
err:
	dev_dbg(&client->dev, "failed=%d\n", ret);
	return ret;
}

static const struct dvb_frontend_ops af9033_ops = {
	.delsys = {SYS_DVBT},
	.info = {
		.name = "Afatech AF9033 (DVB-T)",
		.frequency_min_hz = 174 * MHz,
		.frequency_max_hz = 862 * MHz,
		.frequency_stepsize_hz = 250 * kHz,
		.caps =	FE_CAN_FEC_1_2 |
			FE_CAN_FEC_2_3 |
			FE_CAN_FEC_3_4 |
			FE_CAN_FEC_5_6 |
			FE_CAN_FEC_7_8 |
			FE_CAN_FEC_AUTO |
			FE_CAN_QPSK |
			FE_CAN_QAM_16 |
			FE_CAN_QAM_64 |
			FE_CAN_QAM_AUTO |
			FE_CAN_TRANSMISSION_MODE_AUTO |
			FE_CAN_GUARD_INTERVAL_AUTO |
			FE_CAN_HIERARCHY_AUTO |
			FE_CAN_RECOVER |
			FE_CAN_MUTE_TS
	},

	.init = af9033_init,
	.sleep = af9033_sleep,

	.get_tune_settings = af9033_get_tune_settings,
	.set_frontend = af9033_set_frontend,
	.get_frontend = af9033_get_frontend,

	.read_status = af9033_read_status,
	.read_snr = af9033_read_snr,
	.read_signal_strength = af9033_read_signal_strength,
	.read_ber = af9033_read_ber,
	.read_ucblocks = af9033_read_ucblocks,

	.i2c_gate_ctrl = af9033_i2c_gate_ctrl,
};

static int af9033_probe(struct i2c_client *client,
			const struct i2c_device_id *id)
{
	struct af9033_config *cfg = client->dev.platform_data;
	struct af9033_dev *dev;
	int ret;
	u8 buf[8];
	u32 reg;
	static const struct regmap_config regmap_config = {
		.reg_bits    =  24,
		.val_bits    =  8,
	};

	/* Allocate memory for the internal state */
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev) {
		ret = -ENOMEM;
		goto err;
	}

	/* Setup the state */
	dev->client = client;
	memcpy(&dev->cfg, cfg, sizeof(dev->cfg));
	switch (dev->cfg.ts_mode) {
	case AF9033_TS_MODE_PARALLEL:
		dev->ts_mode_parallel = true;
		break;
	case AF9033_TS_MODE_SERIAL:
		dev->ts_mode_serial = true;
		break;
	case AF9033_TS_MODE_USB:
		/* USB mode for AF9035 */
	default:
		break;
	}

	if (dev->cfg.clock != 12000000) {
		ret = -ENODEV;
		dev_err(&client->dev,
			"Unsupported clock %u Hz. Only 12000000 Hz is supported currently\n",
			dev->cfg.clock);
		goto err_kfree;
	}

	/* Create regmap */
	dev->regmap = regmap_init_i2c(client, &regmap_config);
	if (IS_ERR(dev->regmap)) {
		ret = PTR_ERR(dev->regmap);
		goto err_kfree;
	}

	/* Firmware version */
	switch (dev->cfg.tuner) {
	case AF9033_TUNER_IT9135_38:
	case AF9033_TUNER_IT9135_51:
	case AF9033_TUNER_IT9135_52:
	case AF9033_TUNER_IT9135_60:
	case AF9033_TUNER_IT9135_61:
	case AF9033_TUNER_IT9135_62:
		dev->is_it9135 = true;
		reg = 0x004bfc;
		break;
	default:
		dev->is_af9035 = true;
		reg = 0x0083e9;
		break;
	}

	ret = regmap_bulk_read(dev->regmap, reg, &buf[0], 4);
	if (ret)
		goto err_regmap_exit;
	ret = regmap_bulk_read(dev->regmap, 0x804191, &buf[4], 4);
	if (ret)
		goto err_regmap_exit;

	dev_info(&client->dev,
		 "firmware version: LINK %d.%d.%d.%d - OFDM %d.%d.%d.%d\n",
		 buf[0], buf[1], buf[2], buf[3],
		 buf[4], buf[5], buf[6], buf[7]);

	/* Sleep as chip seems to be partly active by default */
	/* IT9135 did not like to sleep at that early */
	if (dev->is_af9035) {
		ret = regmap_write(dev->regmap, 0x80004c, 0x01);
		if (ret)
			goto err_regmap_exit;
		ret = regmap_write(dev->regmap, 0x800000, 0x00);
		if (ret)
			goto err_regmap_exit;
	}

	/* Create dvb frontend */
	memcpy(&dev->fe.ops, &af9033_ops, sizeof(dev->fe.ops));
	dev->fe.demodulator_priv = dev;
	*cfg->fe = &dev->fe;
	if (cfg->ops) {
		cfg->ops->pid_filter = af9033_pid_filter;
		cfg->ops->pid_filter_ctrl = af9033_pid_filter_ctrl;
	}
	cfg->regmap = dev->regmap;
	i2c_set_clientdata(client, dev);

	dev_info(&client->dev, "Afatech AF9033 successfully attached\n");

	return 0;
err_regmap_exit:
	regmap_exit(dev->regmap);
err_kfree:
	kfree(dev);
err:
	dev_dbg(&client->dev, "failed=%d\n", ret);
	return ret;
}

static int af9033_remove(struct i2c_client *client)
{
	struct af9033_dev *dev = i2c_get_clientdata(client);

	dev_dbg(&client->dev, "\n");

	regmap_exit(dev->regmap);
	kfree(dev);

	return 0;
}

static const struct i2c_device_id af9033_id_table[] = {
	{"af9033", 0},
	{}
};
MODULE_DEVICE_TABLE(i2c, af9033_id_table);

static struct i2c_driver af9033_driver = {
	.driver = {
		.name	= "af9033",
		.suppress_bind_attrs	= true,
	},
	.probe		= af9033_probe,
	.remove		= af9033_remove,
	.id_table	= af9033_id_table,
};

module_i2c_driver(af9033_driver);

MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
MODULE_LICENSE("GPL"