/*
 * Copyright 2017 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fb.h>
#include "linux/delay.h"
#include <linux/types.h>
#include <linux/pci.h>

#include "smumgr.h"
#include "pp_debug.h"
#include "ci_smumgr.h"
#include "ppsmc.h"
#include "smu7_hwmgr.h"
#include "hardwaremanager.h"
#include "ppatomctrl.h"
#include "cgs_common.h"
#include "atombios.h"
#include "pppcielanes.h"

#include "smu/smu_7_0_1_d.h"
#include "smu/smu_7_0_1_sh_mask.h"

#include "dce/dce_8_0_d.h"
#include "dce/dce_8_0_sh_mask.h"

#include "bif/bif_4_1_d.h"
#include "bif/bif_4_1_sh_mask.h"

#include "gca/gfx_7_2_d.h"
#include "gca/gfx_7_2_sh_mask.h"

#include "gmc/gmc_7_1_d.h"
#include "gmc/gmc_7_1_sh_mask.h"

#include "processpptables.h"

#define MC_CG_ARB_FREQ_F0           0x0a
#define MC_CG_ARB_FREQ_F1           0x0b
#define MC_CG_ARB_FREQ_F2           0x0c
#define MC_CG_ARB_FREQ_F3           0x0d

#define SMC_RAM_END 0x40000

#define CISLAND_MINIMUM_ENGINE_CLOCK 800
#define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5

static const struct ci_pt_defaults defaults_hawaii_xt = {
	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
};

static const struct ci_pt_defaults defaults_hawaii_pro = {
	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
};

static const struct ci_pt_defaults defaults_bonaire_xt = {
	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
	{ 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
};


static const struct ci_pt_defaults defaults_saturn_xt = {
	1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
	{ 0x8C,  0x247, 0x249, 0xA6,  0x80,  0x81,  0x8B,  0x89,  0x86,  0xC9,  0xCA,  0xC9,  0x4D,  0x4D,  0x4D  },
	{ 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
};


static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
					uint32_t smc_addr, uint32_t limit)
{
	if ((0 != (3 & smc_addr))
		|| ((smc_addr + 3) >= limit)) {
		pr_err("smc_addr invalid \n");
		return -EINVAL;
	}

	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
	return 0;
}

static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
				const uint8_t *src, uint32_t byte_count, uint32_t limit)
{
	int result;
	uint32_t data = 0;
	uint32_t original_data;
	uint32_t addr = 0;
	uint32_t extra_shift;

	if ((3 & smc_start_address)
		|| ((smc_start_address + byte_count) >= limit)) {
		pr_err("smc_start_address invalid \n");
		return -EINVAL;
	}

	addr = smc_start_address;

	while (byte_count >= 4) {
	/* Bytes are written into the SMC address space with the MSB first. */
		data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];

		result = ci_set_smc_sram_address(hwmgr, addr, limit);

		if (0 != result)
			return result;

		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);

		src += 4;
		byte_count -= 4;
		addr += 4;
	}

	if (0 != byte_count) {

		data = 0;

		result = ci_set_smc_sram_address(hwmgr, addr, limit);

		if (0 != result)
			return result;


		original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);

		extra_shift = 8 * (4 - byte_count);

		while (byte_count > 0) {
			/* Bytes are written into the SMC addres space with the MSB first. */
			data = (0x100 * data) + *src++;
			byte_count--;
		}

		data <<= extra_shift;

		data |= (original_data & ~((~0UL) << extra_shift));

		result = ci_set_smc_sram_address(hwmgr, addr, limit);

		if (0 != result)
			return result;

		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
	}

	return 0;
}


static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
{
	static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };

	ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);

	return 0;
}

bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
{
	return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
			CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
	&& (0x20100 <= cgs_read_ind_register(hwmgr->device,
			CGS_IND_REG__SMC, ixSMC_PC_C)));
}

static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
				uint32_t *value, uint32_t limit)
{
	int result;

	result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);

	if (result)
		return result;

	*value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
	return 0;
}

static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
{
	int ret;

	cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
	cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);

	PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);

	ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);

	if (ret != 1)
		pr_info("\n failed to send message %x ret is %d\n",  msg, ret);

	return 0;
}

static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
					uint16_t msg, uint32_t parameter)
{
	cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
	return ci_send_msg_to_smc(hwmgr, msg);
}

static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
{
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	struct amdgpu_device *adev = hwmgr->adev;
	uint32_t dev_id;

	dev_id = adev->pdev->device;

	switch (dev_id) {
	case 0x67BA:
	case 0x66B1:
		smu_data->power_tune_defaults = &defaults_hawaii_pro;
		break;
	case 0x67B8:
	case 0x66B0:
		smu_data->power_tune_defaults = &defaults_hawaii_xt;
		break;
	case 0x6640:
	case 0x6641:
	case 0x6646:
	case 0x6647:
		smu_data->power_tune_defaults = &defaults_saturn_xt;
		break;
	case 0x6649:
	case 0x6650:
	case 0x6651:
	case 0x6658:
	case 0x665C:
	case 0x665D:
	case 0x67A0:
	case 0x67A1:
	case 0x67A2:
	case 0x67A8:
	case 0x67A9:
	case 0x67AA:
	case 0x67B9:
	case 0x67BE:
	default:
		smu_data->power_tune_defaults = &defaults_bonaire_xt;
		break;
	}
}

static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
	struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
	uint32_t clock, uint32_t *vol)
{
	uint32_t i = 0;

	if (allowed_clock_voltage_table->count == 0)
		return -EINVAL;

	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
			*vol = allowed_clock_voltage_table->entries[i].v;
			return 0;
		}
	}

	*vol = allowed_clock_voltage_table->entries[i - 1].v;
	return 0;
}

static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
{
	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct pp_atomctrl_clock_dividers_vi dividers;
	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
	uint32_t ref_clock;
	uint32_t ref_divider;
	uint32_t fbdiv;
	int result;

	/* get the engine clock dividers for this clock value */
	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);

	PP_ASSERT_WITH_CODE(result == 0,
			"Error retrieving Engine Clock dividers from VBIOS.",
			return result);

	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
	ref_clock = atomctrl_get_reference_clock(hwmgr);
	ref_divider = 1 + dividers.uc_pll_ref_div;

	/* low 14 bits is fraction and high 12 bits is divider */
	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;

	/* SPLL_FUNC_CNTL setup */
	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
			SPLL_REF_DIV, dividers.uc_pll_ref_div);
	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
			SPLL_PDIV_A,  dividers.uc_pll_post_div);

	/* SPLL_FUNC_CNTL_3 setup*/
	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
			SPLL_FB_DIV, fbdiv);

	/* set to use fractional accumulation*/
	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
			SPLL_DITHEN, 1);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
		struct pp_atomctrl_internal_ss_info ss_info;
		uint32_t vco_freq = clock * dividers.uc_pll_post_div;

		if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
				vco_freq, &ss_info)) {
			uint32_t clk_s = ref_clock * 5 /
					(ref_divider * ss_info.speed_spectrum_rate);
			uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
					fbdiv / (clk_s * 10000);

			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
					CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
					CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
			cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
					CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
		}
	}

	sclk->SclkFrequency        = clock;
	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;

	return 0;
}

static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
				const struct phm_phase_shedding_limits_table *pl,
					uint32_t sclk, uint32_t *p_shed)
{
	unsigned int i;

	/* use the minimum phase shedding */
	*p_shed = 1;

	for (i = 0; i < pl->count; i++) {
		if (sclk < pl->entries[i].Sclk) {
			*p_shed = i;
			break;
		}
	}
}

static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
			uint32_t clock_insr)
{
	uint8_t i;
	uint32_t temp;
	uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);

	if (clock < min) {
		pr_info("Engine clock can't satisfy stutter requirement!\n");
		return 0;
	}
	for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
		temp = clock >> i;

		if (temp >= min || i == 0)
			break;
	}
	return i;
}

static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
{
	int result;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);


	result = ci_calculate_sclk_params(hwmgr, clock, level);

	/* populate graphics levels */
	result = ci_get_dependency_volt_by_clk(hwmgr,
			hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
			(uint32_t *)(&level->MinVddc));
	if (result) {
		pr_err("vdd_dep_on_sclk table is NULL\n");
		return result;
	}

	level->SclkFrequency = clock;
	level->MinVddcPhases = 1;

	if (data->vddc_phase_shed_control)
		ci_populate_phase_value_based_on_sclk(hwmgr,
				hwmgr->dyn_state.vddc_phase_shed_limits_table,
				clock,
				&level->MinVddcPhases);

	level->ActivityLevel = data->current_profile_setting.sclk_activity;
	level->CcPwrDynRm = 0;
	level->CcPwrDynRm1 = 0;
	level->EnabledForActivity = 0;
	/* this level can be used for throttling.*/
	level->EnabledForThrottle = 1;
	level->UpH = data->current_profile_setting.sclk_up_hyst;
	level->DownH = data->current_profile_setting.sclk_down_hyst;
	level->VoltageDownH = 0;
	level->PowerThrottle = 0;


	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkDeepSleep))
		level->DeepSleepDivId =
				ci_get_sleep_divider_id_from_clock(clock,
						CISLAND_MINIMUM_ENGINE_CLOCK);

	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
	level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;

	if (0 == result) {
		level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
		CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
		CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
	}

	return result;
}

static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	struct smu7_dpm_table *dpm_table = &data->dpm_table;
	int result = 0;
	uint32_t array = smu_data->dpm_table_start +
			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
	uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
			SMU7_MAX_LEVELS_GRAPHICS;
	struct SMU7_Discrete_GraphicsLevel *levels =
			smu_data->smc_state_table.GraphicsLevel;
	uint32_t i;

	for (i = 0; i < dpm_table->sclk_table.count; i++) {
		result = ci_populate_single_graphic_level(hwmgr,
				dpm_table->sclk_table.dpm_levels[i].value,
				&levels[i]);
		if (result)
			return result;
		if (i > 1)
			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
		if (i == (dpm_table->sclk_table.count - 1))
			smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
				PPSMC_DISPLAY_WATERMARK_HIGH;
	}

	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;

	smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);

	result = ci_copy_bytes_to_smc(hwmgr, array,
				   (u8 *)levels, array_size,
				   SMC_RAM_END);

	return result;

}

static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
{
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;

	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;

	return 0;
}

static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
{
	uint16_t tdc_limit;
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;

	tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
			defaults->tdc_vddc_throttle_release_limit_perc;
	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;

	return 0;
}

static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
{
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
	uint32_t temp;

	if (ci_read_smc_sram_dword(hwmgr,
			fuse_table_offset +
			offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
			(uint32_t *)&temp, SMC_RAM_END))
		PP_ASSERT_WITH_CODE(false,
				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
				return -EINVAL);
	else
		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;

	return 0;
}

static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
{
	uint16_t tmp;
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);

	if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
		|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
	else
		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;

	smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);

	return 0;
}

static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
{
	int i;
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
	uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
	uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;

	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
			    "The CAC Leakage table does not exist!", return -EINVAL);
	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
			    "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
			    "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);

	for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
			hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
		} else {
			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
		}
	}

	return 0;
}

static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
{
	int i;
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	uint8_t *vid = smu_data->power_tune_table.VddCVid;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
		"There should never be more than 8 entries for VddcVid!!!",
		return -EINVAL);

	for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
		vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);

	return 0;
}

static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
{
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
	u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
	int i, min, max;

	min = max = hi_vid[0];
	for (i = 0; i < 8; i++) {
		if (0 != hi_vid[i]) {
			if (min > hi_vid[i])
				min = hi_vid[i];
			if (max < hi_vid[i])
				max = hi_vid[i];
		}

		if (0 != lo_vid[i]) {
			if (min > lo_vid[i])
				min = lo_vid[i];
			if (max < lo_vid[i])
				max = lo_vid[i];
		}
	}

	if ((min == 0) || (max == 0))
		return -EINVAL;
	smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
	smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;

	return 0;
}

static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
{
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
	uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
	struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;

	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);

	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);

	return 0;
}

static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
{
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	uint32_t pm_fuse_table_offset;
	int ret = 0;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PowerContainment)) {
		if (ci_read_smc_sram_dword(hwmgr,
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, PmFuseTable),
				&pm_fuse_table_offset, SMC_RAM_END)) {
			pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
			return -EINVAL;
		}

		/* DW0 - DW3 */
		ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
		/* DW4 - DW5 */
		ret |= ci_populate_vddc_vid(hwmgr);
		/* DW6 */
		ret |= ci_populate_svi_load_line(hwmgr);
		/* DW7 */
		ret |= ci_populate_tdc_limit(hwmgr);
		/* DW8 */
		ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);

		ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);

		ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);

		ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
		if (ret)
			return ret;

		ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
				(uint8_t *)&smu_data->power_tune_table,
				sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
	}
	return ret;
}

static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
{
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
	SMU7_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
	struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
	struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
	const uint16_t *def1, *def2;
	int i, j, k;

	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
	dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));

	dpm_table->DTETjOffset = 0;
	dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
	dpm_table->GpuTjHyst = 8;

	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;

	if (ppm) {
		dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
		dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
	} else {
		dpm_table->PPM_PkgPwrLimit = 0;
		dpm_table->PPM_TemperatureLimit = 0;
	}

	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);

	dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
	def1 = defaults->bapmti_r;
	def2 = defaults->bapmti_rc;

	for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
		for (j = 0; j < SMU7_DTE_SOURCES; j++) {
			for (k = 0; k < SMU7_DTE_SINKS; k++) {
				dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
				dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
				def1++;
				def2++;
			}
		}
	}

	return 0;
}

static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
		pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
		uint16_t *lo)
{
	uint16_t v_index;
	bool vol_found = false;
	*hi = tab->value * VOLTAGE_SCALE;
	*lo = tab->value * VOLTAGE_SCALE;

	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
			"The SCLK/VDDC Dependency Table does not exist.\n",
			return -EINVAL);

	if (NULL == hwmgr->dyn_state.cac_leakage_table) {
		pr_warn("CAC Leakage Table does not exist, using vddc.\n");
		return 0;
	}

	for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
		if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
			vol_found = true;
			if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
				*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
			} else {
				pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
				*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
			}
			break;
		}
	}

	if (!vol_found) {
		for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
			if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
				vol_found = true;
				if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
					*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
				} else {
					pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
					*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
				}
				break;
			}
		}

		if (!vol_found)
			pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
	}

	return 0;
}

static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
		pp_atomctrl_voltage_table_entry *tab,
		SMU7_Discrete_VoltageLevel *smc_voltage_tab)
{
	int result;

	result = ci_get_std_voltage_value_sidd(hwmgr, tab,
			&smc_voltage_tab->StdVoltageHiSidd,
			&smc_voltage_tab->StdVoltageLoSidd);
	if (result) {
		smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
		smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
	}

	smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);

	return 0;
}

static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
			SMU7_Discrete_DpmTable *table)
{
	unsigned int count;
	int result;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	table->VddcLevelCount = data->vddc_voltage_table.count;
	for (count = 0; count < table->VddcLevelCount; count++) {
		result = ci_populate_smc_voltage_table(hwmgr,
				&(data->vddc_voltage_table.entries[count]),
				&(table->VddcLevel[count]));
		PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);

		/* GPIO voltage control */
		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
			table->VddcLevel[count].Smio = (uint8_t) count;
			table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
			table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
		} else {
			table->VddcLevel[count].Smio = 0;
		}
	}

	CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);

	return 0;
}

static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
			SMU7_Discrete_DpmTable *table)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t count;
	int result;

	table->VddciLevelCount = data->vddci_voltage_table.count;

	for (count = 0; count < table->VddciLevelCount; count++) {
		result = ci_populate_smc_voltage_table(hwmgr,
				&(data->vddci_voltage_table.entries[count]),
				&(table->VddciLevel[count]));
		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
			table->VddciLevel[count].Smio = (uint8_t) count;
			table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
			table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
		} else {
			table->VddciLevel[count].Smio = 0;
		}
	}

	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);

	return 0;
}

static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
			SMU7_Discrete_DpmTable *table)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t count;
	int result;

	table->MvddLevelCount = data->mvdd_voltage_table.count;

	for (count = 0; count < table->MvddLevelCount; count++) {
		result = ci_populate_smc_voltage_table(hwmgr,
				&(data->mvdd_voltage_table.entries[count]),
				&table->MvddLevel[count]);
		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
			table->MvddLevel[count].Smio = (uint8_t) count;
			table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
			table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
		} else {
			table->MvddLevel[count].Smio = 0;
		}
	}

	CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);

	return 0;
}


static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
	SMU7_Discrete_DpmTable *table)
{
	int result;

	result = ci_populate_smc_vddc_table(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
			"can not populate VDDC voltage table to SMC", return -EINVAL);

	result = ci_populate_smc_vdd_ci_table(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
			"can not populate VDDCI voltage table to SMC", return -EINVAL);

	result = ci_populate_smc_mvdd_table(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
			"can not populate MVDD voltage table to SMC", return -EINVAL);

	return 0;
}

static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
		struct SMU7_Discrete_Ulv *state)
{
	uint32_t voltage_response_time, ulv_voltage;
	int result;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	state->CcPwrDynRm = 0;
	state->CcPwrDynRm1 = 0;

	result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
	PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);

	if (ulv_voltage == 0) {
		data->ulv_supported = false;
		return 0;
	}

	if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
			state->VddcOffset = 0;
		else
			/* used in SMIO Mode. not implemented for now. this is backup only for CI. */
			state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
	} else {
		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
			state->VddcOffsetVid = 0;
		else  /* used in SVI2 Mode */
			state->VddcOffsetVid = (uint8_t)(
					(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
						* VOLTAGE_VID_OFFSET_SCALE2
						/ VOLTAGE_VID_OFFSET_SCALE1);
	}
	state->VddcPhase = 1;

	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);

	return 0;
}

static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
		 SMU7_Discrete_Ulv *ulv_level)
{
	return ci_populate_ulv_level(hwmgr, ulv_level);
}

static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_dpm_table *dpm_table = &data->dpm_table;
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	uint32_t i;

/* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
		table->LinkLevel[i].PcieGenSpeed  =
			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
		table->LinkLevel[i].PcieLaneCount =
			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
		table->LinkLevel[i].EnabledForActivity = 1;
		table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
		table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
	}

	smu_data->smc_state_table.LinkLevelCount =
		(uint8_t)dpm_table->pcie_speed_table.count;
	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);

	return 0;
}

static int ci_calculate_mclk_params(
		struct pp_hwmgr *hwmgr,
		uint32_t memory_clock,
		SMU7_Discrete_MemoryLevel *mclk,
		bool strobe_mode,
		bool dllStateOn
		)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
	uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
	uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
	uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
	uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
	uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
	uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
	uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
	uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;

	pp_atomctrl_memory_clock_param mpll_param;
	int result;

	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
				memory_clock, &mpll_param, strobe_mode);
	PP_ASSERT_WITH_CODE(0 == result,
		"Error retrieving Memory Clock Parameters from VBIOS.", return result);

	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);

	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
							MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
							MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
							MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);

	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
							MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);

	if (data->is_memory_gddr5) {
		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
								MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
								MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
		pp_atomctrl_internal_ss_info ss_info;
		uint32_t freq_nom;
		uint32_t tmp;
		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);

		/* for GDDR5 for all modes and DDR3 */
		if (1 == mpll_param.qdr)
			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
		else
			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);

		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
		tmp = (freq_nom / reference_clock);
		tmp = tmp * tmp;

		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
			uint32_t clkv =
				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);

			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
		}
	}

	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);


	mclk->MclkFrequency   = memory_clock;
	mclk->MpllFuncCntl    = mpll_func_cntl;
	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
	mclk->DllCntl         = dll_cntl;
	mclk->MpllSs1         = mpll_ss1;
	mclk->MpllSs2         = mpll_ss2;

	return 0;
}

static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
		bool strobe_mode)
{
	uint8_t mc_para_index;

	if (strobe_mode) {
		if (memory_clock < 12500)
			mc_para_index = 0x00;
		else if (memory_clock > 47500)
			mc_para_index = 0x0f;
		else
			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
	} else {
		if (memory_clock < 65000)
			mc_para_index = 0x00;
		else if (memory_clock > 135000)
			mc_para_index = 0x0f;
		else
			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
	}

	return mc_para_index;
}

static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
{
	uint8_t mc_para_index;

	if (memory_clock < 10000)
		mc_para_index = 0;
	else if (memory_clock >= 80000)
		mc_para_index = 0x0f;
	else
		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);

	return mc_para_index;
}

static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
					uint32_t memory_clock, uint32_t *p_shed)
{
	unsigned int i;

	*p_shed = 1;

	for (i = 0; i < pl->count; i++) {
		if (memory_clock < pl->entries[i].Mclk) {
			*p_shed = i;
			break;
		}
	}

	return 0;
}

static int ci_populate_single_memory_level(
		struct pp_hwmgr *hwmgr,
		uint32_t memory_clock,
		SMU7_Discrete_MemoryLevel *memory_level
		)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	int result = 0;
	bool dll_state_on;
	uint32_t mclk_edc_wr_enable_threshold = 40000;
	uint32_t mclk_edc_enable_threshold = 40000;
	uint32_t mclk_strobe_mode_threshold = 40000;

	if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
		result = ci_get_dependency_volt_by_clk(hwmgr,
			hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
		PP_ASSERT_WITH_CODE((0 == result),
			"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
	}

	if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
		result = ci_get_dependency_volt_by_clk(hwmgr,
				hwmgr->dyn_state.vddci_dependency_on_mclk,
				memory_clock,
				&memory_level->MinVddci);
		PP_ASSERT_WITH_CODE((0 == result),
			"can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
	}

	if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
		result = ci_get_dependency_volt_by_clk(hwmgr,
				hwmgr->dyn_state.mvdd_dependency_on_mclk,
				memory_clock,
				&memory_level->MinMvdd);
		PP_ASSERT_WITH_CODE((0 == result),
			"can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
	}

	memory_level->MinVddcPhases = 1;

	if (data->vddc_phase_shed_control) {
		ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
				memory_clock, &memory_level->MinVddcPhases);
	}

	memory_level->EnabledForThrottle = 1;
	memory_level->EnabledForActivity = 1;
	memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
	memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
	memory_level->VoltageDownH = 0;

	/* Indicates maximum activity level for this performance level.*/
	memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
	memory_level->StutterEnable = 0;
	memory_level->StrobeEnable = 0;
	memory_level->EdcReadEnable = 0;
	memory_level->EdcWriteEnable = 0;
	memory_level->RttEnable = 0;

	/* default set to low watermark. Highest level will be set to high later.*/
	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;

	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;

	/* stutter mode not support on ci */

	/* decide strobe mode*/
	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
		(memory_clock <= mclk_strobe_mode_threshold);

	/* decide EDC mode and memory clock ratio*/
	if (data->is_memory_gddr5) {
		memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
					memory_level->StrobeEnable);

		if ((mclk_edc_enable_threshold != 0) &&
				(memory_clock > mclk_edc_enable_threshold)) {
			memory_level->EdcReadEnable = 1;
		}

		if ((mclk_edc_wr_enable_threshold != 0) &&
				(memory_clock > mclk_edc_wr_enable_threshold)) {
			memory_level->EdcWriteEnable = 1;
		}

		if (memory_level->StrobeEnable) {
			if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
			else
				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
		} else
			dll_state_on = data->dll_default_on;
	} else {
		memory_level->StrobeRatio =
			ci_get_ddr3_mclk_frequency_ratio(memory_clock);
		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
	}

	result = ci_calculate_mclk_params(hwmgr,
		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);

	if (0 == result) {
		memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
		memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
		memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
		/* MCLK frequency in units of 10KHz*/
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
		/* Indicates maximum activity level for this performance level.*/
		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
	}

	return result;
}

static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	struct smu7_dpm_table *dpm_table = &data->dpm_table;
	int result;
	struct amdgpu_device *adev = hwmgr->adev;
	uint32_t dev_id;

	uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
	uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
	SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
	uint32_t i;

	memset(levels, 0x00, level_array_size);

	for (i = 0; i < dpm_table->mclk_table.count; i++) {
		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
			"can not populate memory level as memory clock is zero", return -EINVAL);
		result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
			&(smu_data->smc_state_table.MemoryLevel[i]));
		if (0 != result)
			return result;
	}

	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;

	dev_id = adev->pdev->device;

	if ((dpm_table->mclk_table.count >= 2)
		&& ((dev_id == 0x67B0) ||  (dev_id == 0x67B1))) {
		smu_data->smc_state_table.MemoryLevel[1].MinVddci =
				smu_data->smc_state_table.MemoryLevel[0].MinVddci;
		smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
				smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
	}
	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);

	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;

	result = ci_copy_bytes_to_smc(hwmgr,
		level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
		SMC_RAM_END);

	return result;
}

static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
					SMU7_Discrete_VoltageLevel *voltage)
{
	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	uint32_t i = 0;

	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
		/* find mvdd value which clock is more than request */
		for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
			if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
				/* Always round to higher voltage. */
				voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
				break;
			}
		}

		PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
			"MVDD Voltage is outside the supported range.", return -EINVAL);

	} else {
		return -EINVAL;
	}

	return 0;
}

static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
	SMU7_Discrete_DpmTable *table)
{
	int result = 0;
	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct pp_atomctrl_clock_dividers_vi dividers;

	SMU7_Discrete_VoltageLevel voltage_level;
	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;


	/* The ACPI state should not do DPM on DC (or ever).*/
	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;

	if (data->acpi_vddc)
		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
	else
		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);

	table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
	/* assign zero for now*/
	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);

	/* get the engine clock dividers for this clock value*/
	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
		table->ACPILevel.SclkFrequency,  &dividers);

	PP_ASSERT_WITH_CODE(result == 0,
		"Error retrieving Engine Clock dividers from VBIOS.", return result);

	/* divider ID for required SCLK*/
	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
	table->ACPILevel.DeepSleepDivId = 0;

	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
							CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
							CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
	spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
							CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);

	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
	table->ACPILevel.CcPwrDynRm = 0;
	table->ACPILevel.CcPwrDynRm1 = 0;

	/* For various features to be enabled/disabled while this level is active.*/
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
	/* SCLK frequency in units of 10KHz*/
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);


	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
	table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
	table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;

	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
		table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
	else {
		if (data->acpi_vddci != 0)
			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
		else
			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
	}

	if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
		table->MemoryACPILevel.MinMvdd =
			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
	else
		table->MemoryACPILevel.MinMvdd = 0;

	/* Force reset on DLL*/
	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);

	/* Disable DLL in ACPIState*/
	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);

	/* Enable DLL bypass signal*/
	dll_cntl            = PHM_SET_FIELD(dll_cntl,
		DLL_CNTL, MRDCK0_BYPASS, 0);
	dll_cntl            = PHM_SET_FIELD(dll_cntl,
		DLL_CNTL, MRDCK1_BYPASS, 0);

	table->MemoryACPILevel.DllCntl            =
		PP_HOST_TO_SMC_UL(dll_cntl);
	table->MemoryACPILevel.MclkPwrmgtCntl     =
		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
	table->MemoryACPILevel.MpllAdFuncCntl     =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
	table->MemoryACPILevel.MpllDqFuncCntl     =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
	table->MemoryACPILevel.MpllFuncCntl       =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
	table->MemoryACPILevel.MpllFuncCntl_1     =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
	table->MemoryACPILevel.MpllFuncCntl_2     =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
	table->MemoryACPILevel.MpllSs1            =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
	table->MemoryACPILevel.MpllSs2            =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);

	table->MemoryACPILevel.EnabledForThrottle = 0;
	table->MemoryACPILevel.EnabledForActivity = 0;
	table->MemoryACPILevel.UpH = 0;
	table->MemoryACPILevel.DownH = 100;
	table->MemoryACPILevel.VoltageDownH = 0;
	/* Indicates maximum activity level for this performance level.*/
	table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);

	table->MemoryACPILevel.StutterEnable = 0;
	table->MemoryACPILevel.StrobeEnable = 0;
	table->MemoryACPILevel.EdcReadEnable = 0;
	table->MemoryACPILevel.EdcWriteEnable = 0;
	table->MemoryACPILevel.RttEnable = 0;

	return result;
}

static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
					SMU7_Discrete_DpmTable *table)
{
	int result = 0;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
		hwmgr->dyn_state.uvd_clock_voltage_dependency_table;

	table->UvdLevelCount = (uint8_t)(uvd_table->count);

	for (count = 0; count < table->UvdLevelCount; count++) {
		table->UvdLevel[count].VclkFrequency =
					uvd_table->entries[count].vclk;
		table->UvdLevel[count].DclkFrequency =
					uvd_table->entries[count].dclk;
		table->UvdLevel[count].MinVddc =
					uvd_table->entries[count].v * VOLTAGE_SCALE;
		table->UvdLevel[count].MinVddcPhases = 1;

		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->UvdLevel[count].VclkFrequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for Vclk clock", return result);

		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;

		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->UvdLevel[count].DclkFrequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for Dclk clock", return result);

		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
	}

	return result;
}

static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
		SMU7_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_vce_clock_voltage_dependency_table *vce_table =
				hwmgr->dyn_state.vce_clock_voltage_dependency_table;

	table->VceLevelCount = (uint8_t)(vce_table->count);
	table->VceBootLevel = 0;

	for (count = 0; count < table->VceLevelCount; count++) {
		table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
		table->VceLevel[count].MinVoltage =
				vce_table->entries[count].v * VOLTAGE_SCALE;
		table->VceLevel[count].MinPhases = 1;

		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->VceLevel[count].Frequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for VCE engine clock",
				return result);

		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
		CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
	}
	return result;
}

static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
					SMU7_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_acp_clock_voltage_dependency_table *acp_table =
				hwmgr->dyn_state.acp_clock_voltage_dependency_table;

	table->AcpLevelCount = (uint8_t)(acp_table->count);
	table->AcpBootLevel = 0;

	for (count = 0; count < table->AcpLevelCount; count++) {
		table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
		table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
		table->AcpLevel[count].MinPhases = 1;

		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->AcpLevel[count].Frequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for engine clock", return result);

		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
		CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
	}
	return result;
}

static int ci_populate_memory_timing_parameters(
		struct pp_hwmgr *hwmgr,
		uint32_t engine_clock,
		uint32_t memory_clock,
		struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
		)
{
	uint32_t dramTiming;
	uint32_t dramTiming2;
	uint32_t burstTime;
	int result;

	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
				engine_clock, memory_clock);

	PP_ASSERT_WITH_CODE(result == 0,
		"Error calling VBIOS to set DRAM_TIMING.", return result);

	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);

	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
	arb_regs->McArbBurstTime = (uint8_t)burstTime;

	return 0;
}

static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	int result = 0;
	SMU7_Discrete_MCArbDramTimingTable  arb_regs;
	uint32_t i, j;

	memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));

	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
			result = ci_populate_memory_timing_parameters
				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
				 data->dpm_table.mclk_table.dpm_levels[j].value,
				 &arb_regs.entries[i][j]);

			if (0 != result)
				break;
		}
	}

	if (0 == result) {
		result = ci_copy_bytes_to_smc(
				hwmgr,
				smu_data->arb_table_start,
				(uint8_t *)&arb_regs,
				sizeof(SMU7_Discrete_MCArbDramTimingTable),
				SMC_RAM_END
				);
	}

	return result;
}

static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
			SMU7_Discrete_DpmTable *table)
{
	int result = 0;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);

	table->GraphicsBootLevel = 0;
	table->MemoryBootLevel = 0;

	/* find boot level from dpm table*/
	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
			data->vbios_boot_state.sclk_bootup_value,
			(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));

	if (0 != result) {
		smu_data->smc_state_table.GraphicsBootLevel = 0;
		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
		result = 0;
	}

	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
		data->vbios_boot_state.mclk_bootup_value,
		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));

	if (0 != result) {
		smu_data->smc_state_table.MemoryBootLevel = 0;
		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
		result = 0;
	}

	table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
	table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;

	return result;
}

static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
				 SMU7_Discrete_MCRegisters *mc_reg_table)
{
	const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;

	uint32_t i, j;

	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
		if (smu_data->mc_reg_table.validflag & 1<<j) {
			PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
				"Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
			mc_reg_table->address[i].s0 =
				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
			mc_reg_table->address[i].s1 =
				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
			i++;
		}
	}

	mc_reg_table->last = (uint8_t)i;

	return 0;
}

static void ci_convert_mc_registers(
	const struct ci_mc_reg_entry *entry,
	SMU7_Discrete_MCRegisterSet *data,
	uint32_t num_entries, uint32_t valid_flag)
{
	uint32_t i, j;

	for (i = 0, j = 0; j < num_entries; j++) {
		if (valid_flag & 1<<j) {
			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
			i++;
		}
	}
}

static int ci_convert_mc_reg_table_entry_to_smc(
		struct pp_hwmgr *hwmgr,
		const uint32_t memory_clock,
		SMU7_Discrete_MCRegisterSet *mc_reg_table_data
		)
{
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	uint32_t i = 0;

	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
		if (memory_clock <=
			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
			break;
		}
	}

	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
		--i;

	ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
				mc_reg_table_data, smu_data->mc_reg_table.last,
				smu_data->mc_reg_table.validflag);

	return 0;
}

static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
		SMU7_Discrete_MCRegisters *mc_regs)
{
	int result = 0;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	int res;
	uint32_t i;

	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
		res = ci_convert_mc_reg_table_entry_to_smc(
				hwmgr,
				data->dpm_table.mclk_table.dpm_levels[i].value,
				&mc_regs->data[i]
				);

		if (0 != res)
			result = res;
	}

	return result;
}

static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
{
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t address;
	int32_t result;

	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
		return 0;


	memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));

	result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));

	if (result != 0)
		return result;

	address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);

	return  ci_copy_bytes_to_smc(hwmgr, address,
				 (uint8_t *)&smu_data->mc_regs.data[0],
				sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
				SMC_RAM_END);
}

static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
{
	int result;
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);

	memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
	result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize MCRegTable for the MC register addresses!", return result;);

	result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize MCRegTable for driver state!", return result;);

	return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
			(uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
}

static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	uint8_t count, level;

	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);

	for (level = 0; level < count; level++) {
		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
			 >= data->vbios_boot_state.sclk_bootup_value) {
			smu_data->smc_state_table.GraphicsBootLevel = level;
			break;
		}
	}

	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);

	for (level = 0; level < count; level++) {
		if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
			>= data->vbios_boot_state.mclk_bootup_value) {
			smu_data->smc_state_table.MemoryBootLevel = level;
			break;
		}
	}

	return 0;
}

static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
					    SMU7_Discrete_DpmTable *table)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
		table->SVI2Enable = 1;
	else
		table->SVI2Enable = 0;
	return 0;
}

static int ci_start_smc(struct pp_hwmgr *hwmgr)
{
	/* set smc instruct start point at 0x0 */
	ci_program_jump_on_start(hwmgr);

	/* enable smc clock */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);

	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
				 INTERRUPTS_ENABLED, 1);

	return 0;
}

static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint16_t config;

	config = VR_SVI2_PLANE_1;
	table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);

	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
		config = VR_SVI2_PLANE_2;
		table->VRConfig |= config;
	} else {
		pr_info("VDDCshould be on SVI2 controller!");
	}

	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
		config = VR_SVI2_PLANE_2;
		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
		config = VR_SMIO_PATTERN_1;
		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
	}

	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
		config = VR_SMIO_PATTERN_2;
		table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
	}

	return 0;
}

static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
{
	int result;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	SMU7_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
	u32 i;

	ci_initialize_power_tune_defaults(hwmgr);
	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));

	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
		ci_populate_smc_voltage_tables(hwmgr, table);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_AutomaticDCTransition))
		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;


	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StepVddc))
		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;

	if (data->is_memory_gddr5)
		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;

	if (data->ulv_supported) {
		result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
		PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize ULV state!", return result);

		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_ULV_PARAMETER, 0x40035);
	}

	result = ci_populate_all_graphic_levels(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize Graphics Level!", return result);

	result = ci_populate_all_memory_levels(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize Memory Level!", return result);

	result = ci_populate_smc_link_level(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize Link Level!", return result);

	result = ci_populate_smc_acpi_level(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize ACPI Level!", return result);

	result = ci_populate_smc_vce_level(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize VCE Level!", return result);

	result = ci_populate_smc_acp_level(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize ACP Level!", return result);

	/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
	/* need to populate the  ARB settings for the initial state. */
	result = ci_program_memory_timing_parameters(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to Write ARB settings for the initial state.", return result);

	result = ci_populate_smc_uvd_level(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize UVD Level!", return result);

	table->UvdBootLevel  = 0;
	table->VceBootLevel  = 0;
	table->AcpBootLevel  = 0;
	table->SamuBootLevel  = 0;

	table->GraphicsBootLevel = 0;
	table->MemoryBootLevel = 0;

	result = ci_populate_smc_boot_level(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize Boot Level!", return result);

	result = ci_populate_smc_initial_state(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);

	result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);

	table->UVDInterval = 1;
	table->VCEInterval = 1;
	table->ACPInterval = 1;
	table->SAMUInterval = 1;
	table->GraphicsVoltageChangeEnable  = 1;
	table->GraphicsThermThrottleEnable  = 1;
	table->GraphicsInterval = 1;
	table->VoltageInterval  = 1;
	table->ThermalInterval  = 1;

	table->TemperatureLimitHigh =
		(data->thermal_temp_setting.temperature_high *
		 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	table->TemperatureLimitLow =
		(data->thermal_temp_setting.temperature_low *
		SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;

	table->MemoryVoltageChangeEnable  = 1;
	table->MemoryInterval  = 1;
	table->VoltageResponseTime  = 0;
	table->VddcVddciDelta = 4000;
	table->PhaseResponseTime  = 0;
	table->MemoryThermThrottleEnable  = 1;

	PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
			"There must be 1 or more PCIE levels defined in PPTable.",
			return -EINVAL);

	table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
	table->PCIeGenInterval = 1;

	result = ci_populate_vr_config(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to populate VRConfig setting!", return result);
	data->vr_config = table->VRConfig;

	ci_populate_smc_svi2_config(hwmgr, table);

	for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
		CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);

	table->ThermGpio  = 17;
	table->SclkStepSize = 0x4000;
	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_RegulatorHot);
	} else {
		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_RegulatorHot);
	}

	table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;

	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
	table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);

	table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
	table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
	table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);

	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
	result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
					offsetof(SMU7_Discrete_DpmTable, SystemFlags),
					(uint8_t *)&(table->SystemFlags),
					sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
					SMC_RAM_END);

	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to upload dpm data to SMC memory!", return result;);

	result = ci_populate_initial_mc_reg_table(hwmgr);
	PP_ASSERT_WITH_CODE((0 == result),
		"Failed to populate initialize MC Reg table!", return result);

	result = ci_populate_pm_fuses(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to  populate PM fuses to SMC memory!", return result);

	ci_start_smc(hwmgr);

	return 0;
}

static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
{
	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
	uint32_t duty100;
	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
	uint16_t fdo_min, slope1, slope2;
	uint32_t reference_clock;
	int res;
	uint64_t tmp64;

	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
		return 0;

	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_MicrocodeFanControl);
		return 0;
	}

	if (0 == ci_data->fan_table_start) {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
		return 0;
	}

	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);

	if (0 == duty100) {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
		return 0;
	}

	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
	do_div(tmp64, 10000);
	fdo_min = (uint16_t)tmp64;

	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;

	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;

	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);

	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);

	fan_table.Slope1 = cpu_to_be16(slope1);
	fan_table.Slope2 = cpu_to_be16(slope2);

	fan_table.FdoMin = cpu_to_be16(fdo_min);

	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);

	fan_table.HystUp = cpu_to_be16(1);

	fan_table.HystSlope = cpu_to_be16(1);

	fan_table.TempRespLim = cpu_to_be16(5);

	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);

	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);

	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);

	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);

	res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);

	return 0;
}

static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
		return ci_program_memory_timing_parameters(hwmgr);

	return 0;
}

static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);

	int result = 0;
	uint32_t low_sclk_interrupt_threshold = 0;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkThrottleLowNotification)
		&& (data->low_sclk_interrupt_threshold != 0)) {
		low_sclk_interrupt_threshold =
				data->low_sclk_interrupt_threshold;

		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);

		result = ci_copy_bytes_to_smc(
				hwmgr,
				smu_data->dpm_table_start +
				offsetof(SMU7_Discrete_DpmTable,
					LowSclkInterruptT),
				(uint8_t *)&low_sclk_interrupt_threshold,
				sizeof(uint32_t),
				SMC_RAM_END);
	}

	result = ci_update_and_upload_mc_reg_table(hwmgr);

	PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);

	result = ci_program_mem_timing_parameters(hwmgr);
	PP_ASSERT_WITH_CODE((result == 0),
			"Failed to program memory timing parameters!",
			);

	return result;
}

static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
{
	switch (type) {
	case SMU_SoftRegisters:
		switch (member) {
		case HandshakeDisables:
			return offsetof(SMU7_SoftRegisters, HandshakeDisables);
		case VoltageChangeTimeout:
			return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
		case AverageGraphicsActivity:
			return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
		case AverageMemoryActivity:
			return offsetof(SMU7_SoftRegisters, AverageMemoryA);
		case PreVBlankGap:
			return offsetof(SMU7_SoftRegisters, PreVBlankGap);
		case VBlankTimeout:
			return offsetof(SMU7_SoftRegisters, VBlankTimeout);
		case DRAM_LOG_ADDR_H:
			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
		case DRAM_LOG_ADDR_L:
			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
		case DRAM_LOG_PHY_ADDR_H:
			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
		case DRAM_LOG_PHY_ADDR_L:
			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
		case DRAM_LOG_BUFF_SIZE:
			return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
		}
		break;
	case SMU_Discrete_DpmTable:
		switch (member) {
		case LowSclkInterruptThreshold:
			return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
		}
		break;
	}
	pr_debug("can't get the offset of type %x member %x\n", type, member);
	return 0;
}

static uint32_t ci_get_mac_definition(uint32_t value)
{
	switch (value) {
	case SMU_MAX_LEVELS_GRAPHICS:
		return SMU7_MAX_LEVELS_GRAPHICS;
	case SMU_MAX_LEVELS_MEMORY:
		return SMU7_MAX_LEVELS_MEMORY;
	case SMU_MAX_LEVELS_LINK:
		return SMU7_MAX_LEVELS_LINK;
	case SMU_MAX_ENTRIES_SMIO:
		return SMU7_MAX_ENTRIES_SMIO;
	case SMU_MAX_LEVELS_VDDC:
		return SMU7_MAX_LEVELS_VDDC;
	case SMU_MAX_LEVELS_VDDCI:
		return SMU7_MAX_LEVELS_VDDCI;
	case SMU_MAX_LEVELS_MVDD:
		return SMU7_MAX_LEVELS_MVDD;
	}

	pr_debug("can't get the mac of %x\n", value);
	return 0;
}

static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
{
	uint32_t byte_count, start_addr;
	uint8_t *src;
	uint32_t data;

	struct cgs_firmware_info info = {0};

	cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);

	hwmgr->is_kicker = info.is_kicker;
	hwmgr->smu_version = info.version;
	byte_count = info.image_size;
	src = (uint8_t *)info.kptr;
	start_addr = info.ucode_start_address;

	if  (byte_count > SMC_RAM_END) {
		pr_err("SMC address is beyond the SMC RAM area.\n");
		return -EINVAL;
	}

	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);

	for (; byte_count >= 4; byte_count -= 4) {
		data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
		src += 4;
	}
	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);

	if (0 != byte_count) {
		pr_err("SMC size must be divisible by 4\n");
		return -EINVAL;
	}

	return 0;
}

static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
{
	if (ci_is_smc_ram_running(hwmgr)) {
		pr_info("smc is running, no need to load smc firmware\n");
		return 0;
	}
	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
			boot_seq_done, 1);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
			pre_fetcher_en, 1);

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
	return ci_load_smc_ucode(hwmgr);
}

static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);

	uint32_t tmp = 0;
	int result;
	bool error = false;

	if (ci_upload_firmware(hwmgr))
		return -EINVAL;

	result = ci_read_smc_sram_dword(hwmgr,
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, DpmTable),
				&tmp, SMC_RAM_END);

	if (0 == result)
		ci_data->dpm_table_start = tmp;

	error |= (0 != result);

	result = ci_read_smc_sram_dword(hwmgr,
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, SoftRegisters),
				&tmp, SMC_RAM_END);

	if (0 == result) {
		data->soft_regs_start = tmp;
		ci_data->soft_regs_start = tmp;
	}

	error |= (0 != result);

	result = ci_read_smc_sram_dword(hwmgr,
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, mcRegisterTable),
				&tmp, SMC_RAM_END);

	if (0 == result)
		ci_data->mc_reg_table_start = tmp;

	result = ci_read_smc_sram_dword(hwmgr,
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, FanTable),
				&tmp, SMC_RAM_END);

	if (0 == result)
		ci_data->fan_table_start = tmp;

	error |= (0 != result);

	result = ci_read_smc_sram_dword(hwmgr,
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
				&tmp, SMC_RAM_END);

	if (0 == result)
		ci_data->arb_table_start = tmp;

	error |= (0 != result);

	result = ci_read_smc_sram_dword(hwmgr,
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, Version),
				&tmp, SMC_RAM_END);

	if (0 == result)
		hwmgr->microcode_version_info.SMC = tmp;

	error |= (0 != result);

	return error ? 1 : 0;
}

static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
{
	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
}

static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
{
	bool result = true;

	switch (in_reg) {
	case  mmMC_SEQ_RAS_TIMING:
		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
		break;

	case  mmMC_SEQ_DLL_STBY:
		*out_reg = mmMC_SEQ_DLL_STBY_LP;
		break;

	case  mmMC_SEQ_G5PDX_CMD0:
		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
		break;

	case  mmMC_SEQ_G5PDX_CMD1:
		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
		break;

	case  mmMC_SEQ_G5PDX_CTRL:
		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
		break;

	case mmMC_SEQ_CAS_TIMING:
		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
		break;

	case mmMC_SEQ_MISC_TIMING:
		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
		break;

	case mmMC_SEQ_MISC_TIMING2:
		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
		break;

	case mmMC_SEQ_PMG_DVS_CMD:
		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
		break;

	case mmMC_SEQ_PMG_DVS_CTL:
		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
		break;

	case mmMC_SEQ_RD_CTL_D0:
		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
		break;

	case mmMC_SEQ_RD_CTL_D1:
		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
		break;

	case mmMC_SEQ_WR_CTL_D0:
		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
		break;

	case mmMC_SEQ_WR_CTL_D1:
		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
		break;

	case mmMC_PMG_CMD_EMRS:
		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
		break;

	case mmMC_PMG_CMD_MRS:
		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
		break;

	case mmMC_PMG_CMD_MRS1:
		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
		break;

	case mmMC_SEQ_PMG_TIMING:
		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
		break;

	case mmMC_PMG_CMD_MRS2:
		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
		break;

	case mmMC_SEQ_WR_CTL_2:
		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
		break;

	default:
		result = false;
		break;
	}

	return result;
}

static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
{
	uint32_t i;
	uint16_t address;

	for (i = 0; i < table->last; i++) {
		table->mc_reg_address[i].s0 =
			ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
			? address : table->mc_reg_address[i].s1;
	}
	return 0;
}

static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
					struct ci_mc_reg_table *ni_table)
{
	uint8_t i, j;

	PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
		"Invalid VramInfo table.", return -EINVAL);
	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
		"Invalid VramInfo table.", return -EINVAL);

	for (i = 0; i < table->last; i++)
		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;

	ni_table->last = table->last;

	for (i = 0; i < table->num_entries; i++) {
		ni_table->mc_reg_table_entry[i].mclk_max =
			table->mc_reg_table_entry[i].mclk_max;
		for (j = 0; j < table->last; j++) {
			ni_table->mc_reg_table_entry[i].mc_data[j] =
				table->mc_reg_table_entry[i].mc_data[j];
		}
	}

	ni_table->num_entries = table->num_entries;

	return 0;
}

static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
					struct ci_mc_reg_table *table)
{
	uint8_t i, j, k;
	uint32_t temp_reg;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	for (i = 0, j = table->last; i < table->last; i++) {
		PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
			"Invalid VramInfo table.", return -EINVAL);

		switch (table->mc_reg_address[i].s1) {

		case mmMC_SEQ_MISC1:
			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
			for (k = 0; k < table->num_entries; k++) {
				table->mc_reg_table_entry[k].mc_data[j] =
					((temp_reg & 0xffff0000)) |
					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
			}
			j++;

			PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
				"Invalid VramInfo table.", return -EINVAL);
			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
			for (k = 0; k < table->num_entries; k++) {
				table->mc_reg_table_entry[k].mc_data[j] =
					(temp_reg & 0xffff0000) |
					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);

				if (!data->is_memory_gddr5)
					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
			}
			j++;

			if (!data->is_memory_gddr5) {
				PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
					"Invalid VramInfo table.", return -EINVAL);
				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
				for (k = 0; k < table->num_entries; k++) {
					table->mc_reg_table_entry[k].mc_data[j] =
						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
				}
				j++;
			}

			break;

		case mmMC_SEQ_RESERVE_M:
			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
			for (k = 0; k < table->num_entries; k++) {
				table->mc_reg_table_entry[k].mc_data[j] =
					(temp_reg & 0xffff0000) |
					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
			}
			j++;
			break;

		default:
			break;
		}

	}

	table->last = j;

	return 0;
}

static int ci_set_valid_flag(struct ci_mc_reg_table *table)
{
	uint8_t i, j;

	for (i = 0; i < table->last; i++) {
		for (j = 1; j < table->num_entries; j++) {
			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
				table->mc_reg_table_entry[j].mc_data[i]) {
				table->validflag |= (1 << i);
				break;
			}
		}
	}

	return 0;
}

static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
{
	int result;
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
	pp_atomctrl_mc_reg_table *table;
	struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
	uint8_t module_index = ci_get_memory_modile_index(hwmgr);

	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);

	if (NULL == table)
		return -ENOMEM;

	/* Program additional LP registers that are no longer programmed by VBIOS */
	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));

	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);

	if (0 == result)
		result = ci_copy_vbios_smc_reg_table(table, ni_table);

	if (0 == result) {
		ci_set_s0_mc_reg_index(ni_table);
		result = ci_set_mc_special_registers(hwmgr, ni_table);
	}

	if (0 == result)
		ci_set_valid_flag(ni_table);

	kfree(table);

	return result;
}

static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
{
	return ci_is_smc_ram_running(hwmgr);
}

static int ci_smu_init(struct pp_hwmgr *hwmgr)
{
	struct ci_smumgr *ci_priv = NULL;

	ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);

	if (ci_priv == NULL)
		return -ENOMEM;

	hwmgr->smu_backend = ci_priv;

	return 0;
}

static int ci_smu_fini(struct pp_hwmgr *hwmgr)
{
	kfree(hwmgr->smu_backend);
	hwmgr->smu_backend = NULL;
	return 0;
}

static int ci_start_smu(struct pp_hwmgr *hwmgr)
{
	return 0;
}

static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
				void *profile_setting)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct ci_smumgr *smu_data = (struct ci_smumgr *)
			(hwmgr->smu_backend);
	struct profile_mode_setting *setting;
	struct SMU7_Discrete_GraphicsLevel *levels =
			smu_data->smc_state_table.GraphicsLevel;
	uint32_t array = smu_data->dpm_table_start +
			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);

	uint32_t mclk_array = smu_data->dpm_table_start +
			offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
	struct SMU7_Discrete_MemoryLevel *mclk_levels =
			smu_data->smc_state_table.MemoryLevel;
	uint32_t i;
	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;

	if (profile_setting == NULL)
		return -EINVAL;

	setting = (struct profile_mode_setting *)profile_setting;

	if (setting->bupdate_sclk) {
		if (!data->sclk_dpm_key_disabled)
			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
			if (levels[i].ActivityLevel !=
				cpu_to_be16(setting->sclk_activity)) {
				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);

				clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
						+ offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
				offset = clk_activity_offset & ~0x3;
				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));

			}
			if (levels[i].UpH != setting->sclk_up_hyst ||
				levels[i].DownH != setting->sclk_down_hyst) {
				levels[i].UpH = setting->sclk_up_hyst;
				levels[i].DownH = setting->sclk_down_hyst;
				up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
						+ offsetof(SMU7_Discrete_GraphicsLevel, UpH);
				down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
						+ offsetof(SMU7_Discrete_GraphicsLevel, DownH);
				offset = up_hyst_offset & ~0x3;
				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
			}
		}
		if (!data->sclk_dpm_key_disabled)
			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
	}

	if (setting->bupdate_mclk) {
		if (!data->mclk_dpm_key_disabled)
			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
			if (mclk_levels[i].ActivityLevel !=
				cpu_to_be16(setting->mclk_activity)) {
				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);

				clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
						+ offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
				offset = clk_activity_offset & ~0x3;
				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));

			}
			if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
				mclk_levels[i].DownH != setting->mclk_down_hyst) {
				mclk_levels[i].UpH = setting->mclk_up_hyst;
				mclk_levels[i].DownH = setting->mclk_down_hyst;
				up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
						+ offsetof(SMU7_Discrete_MemoryLevel, UpH);
				down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
						+ offsetof(SMU7_Discrete_MemoryLevel, DownH);
				offset = up_hyst_offset & ~0x3;
				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
			}
		}
		if (!data->mclk_dpm_key_disabled)
			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
	}
	return 0;
}

static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
{
	struct amdgpu_device *adev = hwmgr->adev;
	struct smu7_hwmgr *data = hwmgr->backend;
	struct ci_smumgr *smu_data = hwmgr->smu_backend;
	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
			hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
	int32_t i;

	if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
		smu_data->smc_state_table.UvdBootLevel = 0;
	else
		smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
				UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);

	data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;

	for (i = uvd_table->count - 1; i >= 0; i--) {
		if (uvd_table->entries[i].v <= max_vddc)
			data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
			break;
	}
	ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
				data->dpm_level_enable_mask.uvd_dpm_enable_mask);

	return 0;
}

static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
{
	struct amdgpu_device *adev = hwmgr->adev;
	struct smu7_hwmgr *data = hwmgr->backend;
	struct phm_vce_clock_voltage_dependency_table *vce_table =
			hwmgr->dyn_state.vce_clock_voltage_dependency_table;
	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
	int32_t i;

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
				VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/

	data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;

	for (i = vce_table->count - 1; i >= 0; i--) {
		if (vce_table->entries[i].v <= max_vddc)
			data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
			break;
	}
	ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
				data->dpm_level_enable_mask.vce_dpm_enable_mask);

	return 0;
}

static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
{
	switch (type) {
	case SMU_UVD_TABLE:
		ci_update_uvd_smc_table(hwmgr);
		break;
	case SMU_VCE_TABLE:
		ci_update_vce_smc_table(hwmgr);
		break;
	default:
		break;
	}
	return 0;
}

const struct pp_smumgr_func ci_smu_funcs = {
	.name = "ci_smu",
	.smu_init = ci_smu_init,
	.smu_fini = ci_smu_fini,
	.start_smu = ci_start_smu,
	.check_fw_load_finish = NULL,
	.request_smu_load_fw = NULL,
	.request_smu_load_specific_fw = NULL,
	.send_msg_to_smc = ci_send_msg_to_smc,
	.send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
	.download_pptable_settings = NULL,
	.upload_pptable_settings = NULL,
	.get_offsetof = ci_get_offsetof,
	.process_firmware_header = ci_process_firmware_header,
	.init_smc_table = ci_init_smc_table,
	.update_sclk_threshold = ci_update_sclk_threshold,
	.thermal_setup_fan_table = ci_thermal_setup_fan_table,
	.populate_all_graphic_levels = ci_populate_all_graphic_levels,
	.populate_all_memory_levels = ci_populate_all_memory_levels,
	.get_mac_definition = ci_get_mac_definition,
	.initialize_mc_reg_table = ci_initialize_mc_reg_table,
	.is_dpm_running = ci_is_dpm_running,
	.update_dpm_settings = ci_update_dpm_settings,
	.update_smc_table = ci_update_smc_table,
}