/*
 * Copyright 2016 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

#include "dm_services.h"
#include "core_types.h"
#include "resource.h"
#include "custom_float.h"
#include "dcn10_hw_sequencer.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dce/dce_hwseq.h"
#include "abm.h"
#include "dmcu.h"
#include "dcn10_optc.h"
#include "dcn10/dcn10_dpp.h"
#include "dcn10/dcn10_mpc.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "reg_helper.h"
#include "dcn10_hubp.h"
#include "dcn10_hubbub.h"
#include "dcn10_cm_common.h"
#include "dc_link_dp.h"
#include "dccg.h"

#define DC_LOGGER_INIT(logger)

#define CTX \
	hws->ctx
#define REG(reg)\
	hws->regs->reg

#undef FN
#define FN(reg_name, field_name) \
	hws->shifts->field_name, hws->masks->field_name

/*print is 17 wide, first two characters are spaces*/
#define DTN_INFO_MICRO_SEC(ref_cycle) \
	print_microsec(dc_ctx, log_ctx, ref_cycle)

void print_microsec(struct dc_context *dc_ctx,
	struct dc_log_buffer_ctx *log_ctx,
	uint32_t ref_cycle)
{
	const uint32_t ref_clk_mhz = dc_ctx->dc->res_pool->ref_clock_inKhz / 1000;
	static const unsigned int frac = 1000;
	uint32_t us_x10 = (ref_cycle * frac) / ref_clk_mhz;

	DTN_INFO("  %11d.%03d",
			us_x10 / frac,
			us_x10 % frac);
}

static void log_mpc_crc(struct dc *dc,
	struct dc_log_buffer_ctx *log_ctx)
{
	struct dc_context *dc_ctx = dc->ctx;
	struct dce_hwseq *hws = dc->hwseq;

	if (REG(MPC_CRC_RESULT_GB))
		DTN_INFO("MPC_CRC_RESULT_GB:%d MPC_CRC_RESULT_C:%d MPC_CRC_RESULT_AR:%d\n",
		REG_READ(MPC_CRC_RESULT_GB), REG_READ(MPC_CRC_RESULT_C), REG_READ(MPC_CRC_RESULT_AR));
	if (REG(DPP_TOP0_DPP_CRC_VAL_B_A))
		DTN_INFO("DPP_TOP0_DPP_CRC_VAL_B_A:%d DPP_TOP0_DPP_CRC_VAL_R_G:%d\n",
		REG_READ(DPP_TOP0_DPP_CRC_VAL_B_A), REG_READ(DPP_TOP0_DPP_CRC_VAL_R_G));
}

void dcn10_log_hubbub_state(struct dc *dc, struct dc_log_buffer_ctx *log_ctx)
{
	struct dc_context *dc_ctx = dc->ctx;
	struct dcn_hubbub_wm wm;
	int i;

	memset(&wm, 0, sizeof(struct dcn_hubbub_wm));
	dc->res_pool->hubbub->funcs->wm_read_state(dc->res_pool->hubbub, &wm);

	DTN_INFO("HUBBUB WM:      data_urgent  pte_meta_urgent"
			"         sr_enter          sr_exit  dram_clk_change\n");

	for (i = 0; i < 4; i++) {
		struct dcn_hubbub_wm_set *s;

		s = &wm.sets[i];
		DTN_INFO("WM_Set[%d]:", s->wm_set);
		DTN_INFO_MICRO_SEC(s->data_urgent);
		DTN_INFO_MICRO_SEC(s->pte_meta_urgent);
		DTN_INFO_MICRO_SEC(s->sr_enter);
		DTN_INFO_MICRO_SEC(s->sr_exit);
		DTN_INFO_MICRO_SEC(s->dram_clk_chanage);
		DTN_INFO("\n");
	}

	DTN_INFO("\n");
}

static void dcn10_log_hubp_states(struct dc *dc, void *log_ctx)
{
	struct dc_context *dc_ctx = dc->ctx;
	struct resource_pool *pool = dc->res_pool;
	int i;

	DTN_INFO("HUBP:  format  addr_hi  width  height"
			"  rot  mir  sw_mode  dcc_en  blank_en  ttu_dis  underflow"
			"   min_ttu_vblank       qos_low_wm      qos_high_wm\n");
	for (i = 0; i < pool->pipe_count; i++) {
		struct hubp *hubp = pool->hubps[i];
		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(hubp)->state);

		hubp->funcs->hubp_read_state(hubp);

		if (!s->blank_en) {
			DTN_INFO("[%2d]:  %5xh  %6xh  %5d  %6d  %2xh  %2xh  %6xh"
					"  %6d  %8d  %7d  %8xh",
					hubp->inst,
					s->pixel_format,
					s->inuse_addr_hi,
					s->viewport_width,
					s->viewport_height,
					s->rotation_angle,
					s->h_mirror_en,
					s->sw_mode,
					s->dcc_en,
					s->blank_en,
					s->ttu_disable,
					s->underflow_status);
			DTN_INFO_MICRO_SEC(s->min_ttu_vblank);
			DTN_INFO_MICRO_SEC(s->qos_level_low_wm);
			DTN_INFO_MICRO_SEC(s->qos_level_high_wm);
			DTN_INFO("\n");
		}
	}

	DTN_INFO("\n=========RQ========\n");
	DTN_INFO("HUBP:  drq_exp_m  prq_exp_m  mrq_exp_m  crq_exp_m  plane1_ba  L:chunk_s  min_chu_s  meta_ch_s"
		"  min_m_c_s  dpte_gr_s  mpte_gr_s  swath_hei  pte_row_h  C:chunk_s  min_chu_s  meta_ch_s"
		"  min_m_c_s  dpte_gr_s  mpte_gr_s  swath_hei  pte_row_h\n");
	for (i = 0; i < pool->pipe_count; i++) {
		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
		struct _vcs_dpi_display_rq_regs_st *rq_regs = &s->rq_regs;

		if (!s->blank_en)
			DTN_INFO("[%2d]:  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh\n",
				pool->hubps[i]->inst, rq_regs->drq_expansion_mode, rq_regs->prq_expansion_mode, rq_regs->mrq_expansion_mode,
				rq_regs->crq_expansion_mode, rq_regs->plane1_base_address, rq_regs->rq_regs_l.chunk_size,
				rq_regs->rq_regs_l.min_chunk_size, rq_regs->rq_regs_l.meta_chunk_size,
				rq_regs->rq_regs_l.min_meta_chunk_size, rq_regs->rq_regs_l.dpte_group_size,
				rq_regs->rq_regs_l.mpte_group_size, rq_regs->rq_regs_l.swath_height,
				rq_regs->rq_regs_l.pte_row_height_linear, rq_regs->rq_regs_c.chunk_size, rq_regs->rq_regs_c.min_chunk_size,
				rq_regs->rq_regs_c.meta_chunk_size, rq_regs->rq_regs_c.min_meta_chunk_size,
				rq_regs->rq_regs_c.dpte_group_size, rq_regs->rq_regs_c.mpte_group_size,
				rq_regs->rq_regs_c.swath_height, rq_regs->rq_regs_c.pte_row_height_linear);
	}

	DTN_INFO("========DLG========\n");
	DTN_INFO("HUBP:  rc_hbe     dlg_vbe    min_d_y_n  rc_per_ht  rc_x_a_s "
			"  dst_y_a_s  dst_y_pf   dst_y_vvb  dst_y_rvb  dst_y_vfl  dst_y_rfl  rf_pix_fq"
			"  vratio_pf  vrat_pf_c  rc_pg_vbl  rc_pg_vbc  rc_mc_vbl  rc_mc_vbc  rc_pg_fll"
			"  rc_pg_flc  rc_mc_fll  rc_mc_flc  pr_nom_l   pr_nom_c   rc_pg_nl   rc_pg_nc "
			"  mr_nom_l   mr_nom_c   rc_mc_nl   rc_mc_nc   rc_ld_pl   rc_ld_pc   rc_ld_l  "
			"  rc_ld_c    cha_cur0   ofst_cur1  cha_cur1   vr_af_vc0  ddrq_limt  x_rt_dlay"
			"  x_rp_dlay  x_rr_sfl\n");
	for (i = 0; i < pool->pipe_count; i++) {
		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
		struct _vcs_dpi_display_dlg_regs_st *dlg_regs = &s->dlg_attr;

		if (!s->blank_en)
			DTN_INFO("[%2d]:  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh"
				"%  8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh"
				"  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh\n",
				pool->hubps[i]->inst, dlg_regs->refcyc_h_blank_end, dlg_regs->dlg_vblank_end, dlg_regs->min_dst_y_next_start,
				dlg_regs->refcyc_per_htotal, dlg_regs->refcyc_x_after_scaler, dlg_regs->dst_y_after_scaler,
				dlg_regs->dst_y_prefetch, dlg_regs->dst_y_per_vm_vblank, dlg_regs->dst_y_per_row_vblank,
				dlg_regs->dst_y_per_vm_flip, dlg_regs->dst_y_per_row_flip, dlg_regs->ref_freq_to_pix_freq,
				dlg_regs->vratio_prefetch, dlg_regs->vratio_prefetch_c, dlg_regs->refcyc_per_pte_group_vblank_l,
				dlg_regs->refcyc_per_pte_group_vblank_c, dlg_regs->refcyc_per_meta_chunk_vblank_l,
				dlg_regs->refcyc_per_meta_chunk_vblank_c, dlg_regs->refcyc_per_pte_group_flip_l,
				dlg_regs->refcyc_per_pte_group_flip_c, dlg_regs->refcyc_per_meta_chunk_flip_l,
				dlg_regs->refcyc_per_meta_chunk_flip_c, dlg_regs->dst_y_per_pte_row_nom_l,
				dlg_regs->dst_y_per_pte_row_nom_c, dlg_regs->refcyc_per_pte_group_nom_l,
				dlg_regs->refcyc_per_pte_group_nom_c, dlg_regs->dst_y_per_meta_row_nom_l,
				dlg_regs->dst_y_per_meta_row_nom_c, dlg_regs->refcyc_per_meta_chunk_nom_l,
				dlg_regs->refcyc_per_meta_chunk_nom_c, dlg_regs->refcyc_per_line_delivery_pre_l,
				dlg_regs->refcyc_per_line_delivery_pre_c, dlg_regs->refcyc_per_line_delivery_l,
				dlg_regs->refcyc_per_line_delivery_c, dlg_regs->chunk_hdl_adjust_cur0, dlg_regs->dst_y_offset_cur1,
				dlg_regs->chunk_hdl_adjust_cur1, dlg_regs->vready_after_vcount0, dlg_regs->dst_y_delta_drq_limit,
				dlg_regs->xfc_reg_transfer_delay, dlg_regs->xfc_reg_precharge_delay,
				dlg_regs->xfc_reg_remote_surface_flip_latency);
	}

	DTN_INFO("========TTU========\n");
	DTN_INFO("HUBP:  qos_ll_wm  qos_lh_wm  mn_ttu_vb  qos_l_flp  rc_rd_p_l  rc_rd_l    rc_rd_p_c"
			"  rc_rd_c    rc_rd_c0   rc_rd_pc0  rc_rd_c1   rc_rd_pc1  qos_lf_l   qos_rds_l"
			"  qos_lf_c   qos_rds_c  qos_lf_c0  qos_rds_c0 qos_lf_c1  qos_rds_c1\n");
	for (i = 0; i < pool->pipe_count; i++) {
		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
		struct _vcs_dpi_display_ttu_regs_st *ttu_regs = &s->ttu_attr;

		if (!s->blank_en)
			DTN_INFO("[%2d]:  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh\n",
				pool->hubps[i]->inst, ttu_regs->qos_level_low_wm, ttu_regs->qos_level_high_wm, ttu_regs->min_ttu_vblank,
				ttu_regs->qos_level_flip, ttu_regs->refcyc_per_req_delivery_pre_l, ttu_regs->refcyc_per_req_delivery_l,
				ttu_regs->refcyc_per_req_delivery_pre_c, ttu_regs->refcyc_per_req_delivery_c, ttu_regs->refcyc_per_req_delivery_cur0,
				ttu_regs->refcyc_per_req_delivery_pre_cur0, ttu_regs->refcyc_per_req_delivery_cur1,
				ttu_regs->refcyc_per_req_delivery_pre_cur1, ttu_regs->qos_level_fixed_l, ttu_regs->qos_ramp_disable_l,
				ttu_regs->qos_level_fixed_c, ttu_regs->qos_ramp_disable_c, ttu_regs->qos_level_fixed_cur0,
				ttu_regs->qos_ramp_disable_cur0, ttu_regs->qos_level_fixed_cur1, ttu_regs->qos_ramp_disable_cur1);
	}
	DTN_INFO("\n");
}

void dcn10_log_hw_state(struct dc *dc,
	struct dc_log_buffer_ctx *log_ctx)
{
	struct dc_context *dc_ctx = dc->ctx;
	struct resource_pool *pool = dc->res_pool;
	int i;

	DTN_INFO_BEGIN();

	dcn10_log_hubbub_state(dc, log_ctx);

	dcn10_log_hubp_states(dc, log_ctx);

	DTN_INFO("DPP:    IGAM format  IGAM mode    DGAM mode    RGAM mode"
			"  GAMUT mode  C11 C12   C13 C14   C21 C22   C23 C24   "
			"C31 C32   C33 C34\n");
	for (i = 0; i < pool->pipe_count; i++) {
		struct dpp *dpp = pool->dpps[i];
		struct dcn_dpp_state s = {0};

		dpp->funcs->dpp_read_state(dpp, &s);

		if (!s.is_enabled)
			continue;

		DTN_INFO("[%2d]:  %11xh  %-11s  %-11s  %-11s"
				"%8x    %08xh %08xh %08xh %08xh %08xh %08xh",
				dpp->inst,
				s.igam_input_format,
				(s.igam_lut_mode == 0) ? "BypassFixed" :
					((s.igam_lut_mode == 1) ? "BypassFloat" :
					((s.igam_lut_mode == 2) ? "RAM" :
					((s.igam_lut_mode == 3) ? "RAM" :
								 "Unknown"))),
				(s.dgam_lut_mode == 0) ? "Bypass" :
					((s.dgam_lut_mode == 1) ? "sRGB" :
					((s.dgam_lut_mode == 2) ? "Ycc" :
					((s.dgam_lut_mode == 3) ? "RAM" :
					((s.dgam_lut_mode == 4) ? "RAM" :
								 "Unknown")))),
				(s.rgam_lut_mode == 0) ? "Bypass" :
					((s.rgam_lut_mode == 1) ? "sRGB" :
					((s.rgam_lut_mode == 2) ? "Ycc" :
					((s.rgam_lut_mode == 3) ? "RAM" :
					((s.rgam_lut_mode == 4) ? "RAM" :
								 "Unknown")))),
				s.gamut_remap_mode,
				s.gamut_remap_c11_c12,
				s.gamut_remap_c13_c14,
				s.gamut_remap_c21_c22,
				s.gamut_remap_c23_c24,
				s.gamut_remap_c31_c32,
				s.gamut_remap_c33_c34);
		DTN_INFO("\n");
	}
	DTN_INFO("\n");

	DTN_INFO("MPCC:  OPP  DPP  MPCCBOT  MODE  ALPHA_MODE  PREMULT  OVERLAP_ONLY  IDLE\n");
	for (i = 0; i < pool->pipe_count; i++) {
		struct mpcc_state s = {0};

		pool->mpc->funcs->read_mpcc_state(pool->mpc, i, &s);
		if (s.opp_id != 0xf)
			DTN_INFO("[%2d]:  %2xh  %2xh  %6xh  %4d  %10d  %7d  %12d  %4d\n",
				i, s.opp_id, s.dpp_id, s.bot_mpcc_id,
				s.mode, s.alpha_mode, s.pre_multiplied_alpha, s.overlap_only,
				s.idle);
	}
	DTN_INFO("\n");

	DTN_INFO("OTG:  v_bs  v_be  v_ss  v_se  vpol  vmax  vmin  vmax_sel  vmin_sel"
			"  h_bs  h_be  h_ss  h_se  hpol  htot  vtot  underflow\n");

	for (i = 0; i < pool->timing_generator_count; i++) {
		struct timing_generator *tg = pool->timing_generators[i];
		struct dcn_otg_state s = {0};

		optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);

		//only print if OTG master is enabled
		if ((s.otg_enabled & 1) == 0)
			continue;

		DTN_INFO("[%d]: %5d %5d %5d %5d %5d %5d %5d %9d %9d %5d %5d %5d"
				" %5d %5d %5d %5d  %9d\n",
				tg->inst,
				s.v_blank_start,
				s.v_blank_end,
				s.v_sync_a_start,
				s.v_sync_a_end,
				s.v_sync_a_pol,
				s.v_total_max,
				s.v_total_min,
				s.v_total_max_sel,
				s.v_total_min_sel,
				s.h_blank_start,
				s.h_blank_end,
				s.h_sync_a_start,
				s.h_sync_a_end,
				s.h_sync_a_pol,
				s.h_total,
				s.v_total,
				s.underflow_occurred_status);

		// Clear underflow for debug purposes
		// We want to keep underflow sticky bit on for the longevity tests outside of test environment.
		// This function is called only from Windows or Diags test environment, hence it's safe to clear
		// it from here without affecting the original intent.
		tg->funcs->clear_optc_underflow(tg);
	}
	DTN_INFO("\n");

	DTN_INFO("\nCALCULATED Clocks: dcfclk_khz:%d  dcfclk_deep_sleep_khz:%d  dispclk_khz:%d\n"
		"dppclk_khz:%d  max_supported_dppclk_khz:%d  fclk_khz:%d  socclk_khz:%d\n\n",
			dc->current_state->bw.dcn.clk.dcfclk_khz,
			dc->current_state->bw.dcn.clk.dcfclk_deep_sleep_khz,
			dc->current_state->bw.dcn.clk.dispclk_khz,
			dc->current_state->bw.dcn.clk.dppclk_khz,
			dc->current_state->bw.dcn.clk.max_supported_dppclk_khz,
			dc->current_state->bw.dcn.clk.fclk_khz,
			dc->current_state->bw.dcn.clk.socclk_khz);

	log_mpc_crc(dc, log_ctx);

	DTN_INFO_END();
}

static void enable_power_gating_plane(
	struct dce_hwseq *hws,
	bool enable)
{
	bool force_on = 1; /* disable power gating */

	if (enable)
		force_on = 0;

	/* DCHUBP0/1/2/3 */
	REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
	REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
	REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
	REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);

	/* DPP0/1/2/3 */
	REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
	REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
	REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
	REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
}

static void disable_vga(
	struct dce_hwseq *hws)
{
	unsigned int in_vga1_mode = 0;
	unsigned int in_vga2_mode = 0;
	unsigned int in_vga3_mode = 0;
	unsigned int in_vga4_mode = 0;

	REG_GET(D1VGA_CONTROL, D1VGA_MODE_ENABLE, &in_vga1_mode);
	REG_GET(D2VGA_CONTROL, D2VGA_MODE_ENABLE, &in_vga2_mode);
	REG_GET(D3VGA_CONTROL, D3VGA_MODE_ENABLE, &in_vga3_mode);
	REG_GET(D4VGA_CONTROL, D4VGA_MODE_ENABLE, &in_vga4_mode);

	if (in_vga1_mode == 0 && in_vga2_mode == 0 &&
			in_vga3_mode == 0 && in_vga4_mode == 0)
		return;

	REG_WRITE(D1VGA_CONTROL, 0);
	REG_WRITE(D2VGA_CONTROL, 0);
	REG_WRITE(D3VGA_CONTROL, 0);
	REG_WRITE(D4VGA_CONTROL, 0);

	/* HW Engineer's Notes:
	 *  During switch from vga->extended, if we set the VGA_TEST_ENABLE and
	 *  then hit the VGA_TEST_RENDER_START, then the DCHUBP timing gets updated correctly.
	 *
	 *  Then vBIOS will have it poll for the VGA_TEST_RENDER_DONE and unset
	 *  VGA_TEST_ENABLE, to leave it in the same state as before.
	 */
	REG_UPDATE(VGA_TEST_CONTROL, VGA_TEST_ENABLE, 1);
	REG_UPDATE(VGA_TEST_CONTROL, VGA_TEST_RENDER_START, 1);
}

static void dpp_pg_control(
		struct dce_hwseq *hws,
		unsigned int dpp_inst,
		bool power_on)
{
	uint32_t power_gate = power_on ? 0 : 1;
	uint32_t pwr_status = power_on ? 0 : 2;

	if (hws->ctx->dc->debug.disable_dpp_power_gate)
		return;
	if (REG(DOMAIN1_PG_CONFIG) == 0)
		return;

	switch (dpp_inst) {
	case 0: /* DPP0 */
		REG_UPDATE(DOMAIN1_PG_CONFIG,
				DOMAIN1_POWER_GATE, power_gate);

		REG_WAIT(DOMAIN1_PG_STATUS,
				DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
				1, 1000);
		break;
	case 1: /* DPP1 */
		REG_UPDATE(DOMAIN3_PG_CONFIG,
				DOMAIN3_POWER_GATE, power_gate);

		REG_WAIT(DOMAIN3_PG_STATUS,
				DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
				1, 1000);
		break;
	case 2: /* DPP2 */
		REG_UPDATE(DOMAIN5_PG_CONFIG,
				DOMAIN5_POWER_GATE, power_gate);

		REG_WAIT(DOMAIN5_PG_STATUS,
				DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
				1, 1000);
		break;
	case 3: /* DPP3 */
		REG_UPDATE(DOMAIN7_PG_CONFIG,
				DOMAIN7_POWER_GATE, power_gate);

		REG_WAIT(DOMAIN7_PG_STATUS,
				DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
				1, 1000);
		break;
	default:
		BREAK_TO_DEBUGGER();
		break;
	}
}

static void hubp_pg_control(
		struct dce_hwseq *hws,
		unsigned int hubp_inst,
		bool power_on)
{
	uint32_t power_gate = power_on ? 0 : 1;
	uint32_t pwr_status = power_on ? 0 : 2;

	if (hws->ctx->dc->debug.disable_hubp_power_gate)
		return;
	if (REG(DOMAIN0_PG_CONFIG) == 0)
		return;

	switch (hubp_inst) {
	case 0: /* DCHUBP0 */
		REG_UPDATE(DOMAIN0_PG_CONFIG,
				DOMAIN0_POWER_GATE, power_gate);

		REG_WAIT(DOMAIN0_PG_STATUS,
				DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
				1, 1000);
		break;
	case 1: /* DCHUBP1 */
		REG_UPDATE(DOMAIN2_PG_CONFIG,
				DOMAIN2_POWER_GATE, power_gate);

		REG_WAIT(DOMAIN2_PG_STATUS,
				DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
				1, 1000);
		break;
	case 2: /* DCHUBP2 */
		REG_UPDATE(DOMAIN4_PG_CONFIG,
				DOMAIN4_POWER_GATE, power_gate);

		REG_WAIT(DOMAIN4_PG_STATUS,
				DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
				1, 1000);
		break;
	case 3: /* DCHUBP3 */
		REG_UPDATE(DOMAIN6_PG_CONFIG,
				DOMAIN6_POWER_GATE, power_gate);

		REG_WAIT(DOMAIN6_PG_STATUS,
				DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
				1, 1000);
		break;
	default:
		BREAK_TO_DEBUGGER();
		break;
	}
}

static void power_on_plane(
	struct dce_hwseq *hws,
	int plane_id)
{
	DC_LOGGER_INIT(hws->ctx->logger);
	if (REG(DC_IP_REQUEST_CNTL)) {
		REG_SET(DC_IP_REQUEST_CNTL, 0,
				IP_REQUEST_EN, 1);
		dpp_pg_control(hws, plane_id, true);
		hubp_pg_control(hws, plane_id, true);
		REG_SET(DC_IP_REQUEST_CNTL, 0,
				IP_REQUEST_EN, 0);
		DC_LOG_DEBUG(
				"Un-gated front end for pipe %d\n", plane_id);
	}
}

static void undo_DEGVIDCN10_253_wa(struct dc *dc)
{
	struct dce_hwseq *hws = dc->hwseq;
	struct hubp *hubp = dc->res_pool->hubps[0];

	if (!hws->wa_state.DEGVIDCN10_253_applied)
		return;

	hubp->funcs->set_blank(hubp, true);

	REG_SET(DC_IP_REQUEST_CNTL, 0,
			IP_REQUEST_EN, 1);

	hubp_pg_control(hws, 0, false);
	REG_SET(DC_IP_REQUEST_CNTL, 0,
			IP_REQUEST_EN, 0);

	hws->wa_state.DEGVIDCN10_253_applied = false;
}

static void apply_DEGVIDCN10_253_wa(struct dc *dc)
{
	struct dce_hwseq *hws = dc->hwseq;
	struct hubp *hubp = dc->res_pool->hubps[0];
	int i;

	if (dc->debug.disable_stutter)
		return;

	if (!hws->wa.DEGVIDCN10_253)
		return;

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		if (!dc->res_pool->hubps[i]->power_gated)
			return;
	}

	/* all pipe power gated, apply work around to enable stutter. */

	REG_SET(DC_IP_REQUEST_CNTL, 0,
			IP_REQUEST_EN, 1);

	hubp_pg_control(hws, 0, true);
	REG_SET(DC_IP_REQUEST_CNTL, 0,
			IP_REQUEST_EN, 0);

	hubp->funcs->set_hubp_blank_en(hubp, false);
	hws->wa_state.DEGVIDCN10_253_applied = true;
}

static void bios_golden_init(struct dc *dc)
{
	struct dc_bios *bp = dc->ctx->dc_bios;
	int i;

	/* initialize dcn global */
	bp->funcs->enable_disp_power_gating(bp,
			CONTROLLER_ID_D0, ASIC_PIPE_INIT);

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		/* initialize dcn per pipe */
		bp->funcs->enable_disp_power_gating(bp,
				CONTROLLER_ID_D0 + i, ASIC_PIPE_DISABLE);
	}
}

static void false_optc_underflow_wa(
		struct dc *dc,
		const struct dc_stream_state *stream,
		struct timing_generator *tg)
{
	int i;
	bool underflow;

	if (!dc->hwseq->wa.false_optc_underflow)
		return;

	underflow = tg->funcs->is_optc_underflow_occurred(tg);

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];

		if (old_pipe_ctx->stream != stream)
			continue;

		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, old_pipe_ctx);
	}

	tg->funcs->set_blank_data_double_buffer(tg, true);

	if (tg->funcs->is_optc_underflow_occurred(tg) && !underflow)
		tg->funcs->clear_optc_underflow(tg);
}

static enum dc_status dcn10_enable_stream_timing(
		struct pipe_ctx *pipe_ctx,
		struct dc_state *context,
		struct dc *dc)
{
	struct dc_stream_state *stream = pipe_ctx->stream;
	enum dc_color_space color_space;
	struct tg_color black_color = {0};

	/* by upper caller loop, pipe0 is parent pipe and be called first.
	 * back end is set up by for pipe0. Other children pipe share back end
	 * with pipe 0. No program is needed.
	 */
	if (pipe_ctx->top_pipe != NULL)
		return DC_OK;

	/* TODO check if timing_changed, disable stream if timing changed */

	/* HW program guide assume display already disable
	 * by unplug sequence. OTG assume stop.
	 */
	pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);

	if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
			pipe_ctx->clock_source,
			&pipe_ctx->stream_res.pix_clk_params,
			&pipe_ctx->pll_settings)) {
		BREAK_TO_DEBUGGER();
		return DC_ERROR_UNEXPECTED;
	}
	pipe_ctx->stream_res.tg->dlg_otg_param.vready_offset = pipe_ctx->pipe_dlg_param.vready_offset;
	pipe_ctx->stream_res.tg->dlg_otg_param.vstartup_start = pipe_ctx->pipe_dlg_param.vstartup_start;
	pipe_ctx->stream_res.tg->dlg_otg_param.vupdate_offset = pipe_ctx->pipe_dlg_param.vupdate_offset;
	pipe_ctx->stream_res.tg->dlg_otg_param.vupdate_width = pipe_ctx->pipe_dlg_param.vupdate_width;

	pipe_ctx->stream_res.tg->dlg_otg_param.signal =  pipe_ctx->stream->signal;

	pipe_ctx->stream_res.tg->funcs->program_timing(
			pipe_ctx->stream_res.tg,
			&stream->timing,
			true);

#if 0 /* move to after enable_crtc */
	/* TODO: OPP FMT, ABM. etc. should be done here. */
	/* or FPGA now. instance 0 only. TODO: move to opp.c */

	inst_offset = reg_offsets[pipe_ctx->stream_res.tg->inst].fmt;

	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
				pipe_ctx->stream_res.opp,
				&stream->bit_depth_params,
				&stream->clamping);
#endif
	/* program otg blank color */
	color_space = stream->output_color_space;
	color_space_to_black_color(dc, color_space, &black_color);

	if (pipe_ctx->stream_res.tg->funcs->set_blank_color)
		pipe_ctx->stream_res.tg->funcs->set_blank_color(
				pipe_ctx->stream_res.tg,
				&black_color);

	if (pipe_ctx->stream_res.tg->funcs->is_blanked &&
			!pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg)) {
		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
		hwss_wait_for_blank_complete(pipe_ctx->stream_res.tg);
		false_optc_underflow_wa(dc, pipe_ctx->stream, pipe_ctx->stream_res.tg);
	}

	/* VTG is  within DCHUB command block. DCFCLK is always on */
	if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
		BREAK_TO_DEBUGGER();
		return DC_ERROR_UNEXPECTED;
	}

	/* TODO program crtc source select for non-virtual signal*/
	/* TODO program FMT */
	/* TODO setup link_enc */
	/* TODO set stream attributes */
	/* TODO program audio */
	/* TODO enable stream if timing changed */
	/* TODO unblank stream if DP */

	return DC_OK;
}

static void reset_back_end_for_pipe(
		struct dc *dc,
		struct pipe_ctx *pipe_ctx,
		struct dc_state *context)
{
	int i;
	DC_LOGGER_INIT(dc->ctx->logger);
	if (pipe_ctx->stream_res.stream_enc == NULL) {
		pipe_ctx->stream = NULL;
		return;
	}

	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
		/* DPMS may already disable */
		if (!pipe_ctx->stream->dpms_off)
			core_link_disable_stream(pipe_ctx, FREE_ACQUIRED_RESOURCE);
		else if (pipe_ctx->stream_res.audio) {
			dc->hwss.disable_audio_stream(pipe_ctx, FREE_ACQUIRED_RESOURCE);
		}

	}

	/* by upper caller loop, parent pipe: pipe0, will be reset last.
	 * back end share by all pipes and will be disable only when disable
	 * parent pipe.
	 */
	if (pipe_ctx->top_pipe == NULL) {
		pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);

		pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
	}

	for (i = 0; i < dc->res_pool->pipe_count; i++)
		if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
			break;

	if (i == dc->res_pool->pipe_count)
		return;

	pipe_ctx->stream = NULL;
	DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
					pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
}

static bool dcn10_hw_wa_force_recovery(struct dc *dc)
{
	struct hubp *hubp ;
	unsigned int i;
	bool need_recover = true;

	if (!dc->debug.recovery_enabled)
		return false;

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe_ctx =
			&dc->current_state->res_ctx.pipe_ctx[i];
		if (pipe_ctx != NULL) {
			hubp = pipe_ctx->plane_res.hubp;
			if (hubp != NULL && hubp->funcs->hubp_get_underflow_status) {
				if (hubp->funcs->hubp_get_underflow_status(hubp) != 0) {
					/* one pipe underflow, we will reset all the pipes*/
					need_recover = true;
				}
			}
		}
	}
	if (!need_recover)
		return false;
	/*
	DCHUBP_CNTL:HUBP_BLANK_EN=1
	DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=1
	DCHUBP_CNTL:HUBP_DISABLE=1
	DCHUBP_CNTL:HUBP_DISABLE=0
	DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=0
	DCSURF_PRIMARY_SURFACE_ADDRESS
	DCHUBP_CNTL:HUBP_BLANK_EN=0
	*/

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe_ctx =
			&dc->current_state->res_ctx.pipe_ctx[i];
		if (pipe_ctx != NULL) {
			hubp = pipe_ctx->plane_res.hubp;
			/*DCHUBP_CNTL:HUBP_BLANK_EN=1*/
			if (hubp != NULL && hubp->funcs->set_hubp_blank_en)
				hubp->funcs->set_hubp_blank_en(hubp, true);
		}
	}
	/*DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=1*/
	hubbub1_soft_reset(dc->res_pool->hubbub, true);

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe_ctx =
			&dc->current_state->res_ctx.pipe_ctx[i];
		if (pipe_ctx != NULL) {
			hubp = pipe_ctx->plane_res.hubp;
			/*DCHUBP_CNTL:HUBP_DISABLE=1*/
			if (hubp != NULL && hubp->funcs->hubp_disable_control)
				hubp->funcs->hubp_disable_control(hubp, true);
		}
	}
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe_ctx =
			&dc->current_state->res_ctx.pipe_ctx[i];
		if (pipe_ctx != NULL) {
			hubp = pipe_ctx->plane_res.hubp;
			/*DCHUBP_CNTL:HUBP_DISABLE=0*/
			if (hubp != NULL && hubp->funcs->hubp_disable_control)
				hubp->funcs->hubp_disable_control(hubp, true);
		}
	}
	/*DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=0*/
	hubbub1_soft_reset(dc->res_pool->hubbub, false);
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe_ctx =
			&dc->current_state->res_ctx.pipe_ctx[i];
		if (pipe_ctx != NULL) {
			hubp = pipe_ctx->plane_res.hubp;
			/*DCHUBP_CNTL:HUBP_BLANK_EN=0*/
			if (hubp != NULL && hubp->funcs->set_hubp_blank_en)
				hubp->funcs->set_hubp_blank_en(hubp, true);
		}
	}
	return true;

}


void dcn10_verify_allow_pstate_change_high(struct dc *dc)
{
	static bool should_log_hw_state; /* prevent hw state log by default */

	if (!hubbub1_verify_allow_pstate_change_high(dc->res_pool->hubbub)) {
		if (should_log_hw_state) {
			dcn10_log_hw_state(dc, NULL);
		}
		BREAK_TO_DEBUGGER();
		if (dcn10_hw_wa_force_recovery(dc)) {
		/*check again*/
			if (!hubbub1_verify_allow_pstate_change_high(dc->res_pool->hubbub))
				BREAK_TO_DEBUGGER();
		}
	}
}

/* trigger HW to start disconnect plane from stream on the next vsync */
void hwss1_plane_atomic_disconnect(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
	struct hubp *hubp = pipe_ctx->plane_res.hubp;
	int dpp_id = pipe_ctx->plane_res.dpp->inst;
	struct mpc *mpc = dc->res_pool->mpc;
	struct mpc_tree *mpc_tree_params;
	struct mpcc *mpcc_to_remove = NULL;
	struct output_pixel_processor *opp = pipe_ctx->stream_res.opp;

	mpc_tree_params = &(opp->mpc_tree_params);
	mpcc_to_remove = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, dpp_id);

	/*Already reset*/
	if (mpcc_to_remove == NULL)
		return;

	mpc->funcs->remove_mpcc(mpc, mpc_tree_params, mpcc_to_remove);
	if (opp != NULL)
		opp->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;

	dc->optimized_required = true;

	if (hubp->funcs->hubp_disconnect)
		hubp->funcs->hubp_disconnect(hubp);

	if (dc->debug.sanity_checks)
		dcn10_verify_allow_pstate_change_high(dc);
}

static void plane_atomic_power_down(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
	struct dce_hwseq *hws = dc->hwseq;
	struct dpp *dpp = pipe_ctx->plane_res.dpp;
	DC_LOGGER_INIT(dc->ctx->logger);

	if (REG(DC_IP_REQUEST_CNTL)) {
		REG_SET(DC_IP_REQUEST_CNTL, 0,
				IP_REQUEST_EN, 1);
		dpp_pg_control(hws, dpp->inst, false);
		hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, false);
		dpp->funcs->dpp_reset(dpp);
		REG_SET(DC_IP_REQUEST_CNTL, 0,
				IP_REQUEST_EN, 0);
		DC_LOG_DEBUG(
				"Power gated front end %d\n", pipe_ctx->pipe_idx);
	}
}

/* disable HW used by plane.
 * note:  cannot disable until disconnect is complete
 */
static void plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
	struct hubp *hubp = pipe_ctx->plane_res.hubp;
	struct dpp *dpp = pipe_ctx->plane_res.dpp;
	int opp_id = hubp->opp_id;

	dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);

	hubp->funcs->hubp_clk_cntl(hubp, false);

	dpp->funcs->dpp_dppclk_control(dpp, false, false);

	if (opp_id != 0xf && pipe_ctx->stream_res.opp->mpc_tree_params.opp_list == NULL)
		pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
				pipe_ctx->stream_res.opp,
				false);

	hubp->power_gated = true;
	dc->optimized_required = false; /* We're powering off, no need to optimize */

	plane_atomic_power_down(dc, pipe_ctx);

	pipe_ctx->stream = NULL;
	memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
	memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
	pipe_ctx->top_pipe = NULL;
	pipe_ctx->bottom_pipe = NULL;
	pipe_ctx->plane_state = NULL;
}

static void dcn10_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
	DC_LOGGER_INIT(dc->ctx->logger);

	if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
		return;

	plane_atomic_disable(dc, pipe_ctx);

	apply_DEGVIDCN10_253_wa(dc);

	DC_LOG_DC("Power down front end %d\n",
					pipe_ctx->pipe_idx);
}

static void dcn10_init_pipes(struct dc *dc, struct dc_state *context)
{
	int i;
	bool can_apply_seamless_boot = false;

	for (i = 0; i < context->stream_count; i++) {
		if (context->streams[i]->apply_seamless_boot_optimization) {
			can_apply_seamless_boot = true;
			break;
		}
	}

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct timing_generator *tg = dc->res_pool->timing_generators[i];
		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];

		/* There is assumption that pipe_ctx is not mapping irregularly
		 * to non-preferred front end. If pipe_ctx->stream is not NULL,
		 * we will use the pipe, so don't disable
		 */
		if (pipe_ctx->stream != NULL)
			continue;

		if (tg->funcs->is_tg_enabled(tg))
			tg->funcs->lock(tg);

		/* Blank controller using driver code instead of
		 * command table.
		 */
		if (tg->funcs->is_tg_enabled(tg)) {
			tg->funcs->set_blank(tg, true);
			hwss_wait_for_blank_complete(tg);
		}
	}

	/* Cannot reset the MPC mux if seamless boot */
	if (!can_apply_seamless_boot)
		dc->res_pool->mpc->funcs->mpc_init(dc->res_pool->mpc);

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct timing_generator *tg = dc->res_pool->timing_generators[i];
		struct hubp *hubp = dc->res_pool->hubps[i];
		struct dpp *dpp = dc->res_pool->dpps[i];
		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];

		// W/A for issue with dc_post_update_surfaces_to_stream
		hubp->power_gated = true;

		/* There is assumption that pipe_ctx is not mapping irregularly
		 * to non-preferred front end. If pipe_ctx->stream is not NULL,
		 * we will use the pipe, so don't disable
		 */
		if (pipe_ctx->stream != NULL)
			continue;

		dpp->funcs->dpp_reset(dpp);

		pipe_ctx->stream_res.tg = tg;
		pipe_ctx->pipe_idx = i;

		pipe_ctx->plane_res.hubp = hubp;
		pipe_ctx->plane_res.dpp = dpp;
		pipe_ctx->plane_res.mpcc_inst = dpp->inst;
		hubp->mpcc_id = dpp->inst;
		hubp->opp_id = 0xf;
		hubp->power_gated = false;

		dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
		dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
		dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
		pipe_ctx->stream_res.opp = dc->res_pool->opps[i];

		hwss1_plane_atomic_disconnect(dc, pipe_ctx);

		if (tg->funcs->is_tg_enabled(tg))
			tg->funcs->unlock(tg);

		dcn10_disable_plane(dc, pipe_ctx);

		pipe_ctx->stream_res.tg = NULL;
		pipe_ctx->plane_res.hubp = NULL;

		tg->funcs->tg_init(tg);
	}
}

static void dcn10_init_hw(struct dc *dc)
{
	int i;
	struct abm *abm = dc->res_pool->abm;
	struct dmcu *dmcu = dc->res_pool->dmcu;
	struct dce_hwseq *hws = dc->hwseq;
	struct dc_bios *dcb = dc->ctx->dc_bios;

	if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
		REG_WRITE(REFCLK_CNTL, 0);
		REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
		REG_WRITE(DIO_MEM_PWR_CTRL, 0);

		if (!dc->debug.disable_clock_gate) {
			/* enable all DCN clock gating */
			REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);

			REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);

			REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
		}

		enable_power_gating_plane(dc->hwseq, true);

		/* end of FPGA. Below if real ASIC */
		return;
	}

	if (!dcb->funcs->is_accelerated_mode(dcb)) {
		bool allow_self_fresh_force_enable =
			hububu1_is_allow_self_refresh_enabled(
						dc->res_pool->hubbub);

		bios_golden_init(dc);

		/* WA for making DF sleep when idle after resume from S0i3.
		 * DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_ENABLE is set to 1 by
		 * command table, if DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_ENABLE = 0
		 * before calling command table and it changed to 1 after,
		 * it should be set back to 0.
		 */
		if (allow_self_fresh_force_enable == false &&
				hububu1_is_allow_self_refresh_enabled(dc->res_pool->hubbub))
			hubbub1_allow_self_refresh_control(dc->res_pool->hubbub, true);

		disable_vga(dc->hwseq);
	}

	for (i = 0; i < dc->link_count; i++) {
		/* Power up AND update implementation according to the
		 * required signal (which may be different from the
		 * default signal on connector).
		 */
		struct dc_link *link = dc->links[i];

		if (link->link_enc->connector.id == CONNECTOR_ID_EDP)
			dc->hwss.edp_power_control(link, true);

		link->link_enc->funcs->hw_init(link->link_enc);

		/* Check for enabled DIG to identify enabled display */
		if (link->link_enc->funcs->is_dig_enabled &&
			link->link_enc->funcs->is_dig_enabled(link->link_enc))
			link->link_status.link_active = true;
	}

	for (i = 0; i < dc->res_pool->audio_count; i++) {
		struct audio *audio = dc->res_pool->audios[i];

		audio->funcs->hw_init(audio);
	}

	if (abm != NULL) {
		abm->funcs->init_backlight(abm);
		abm->funcs->abm_init(abm);
	}

	if (dmcu != NULL)
		dmcu->funcs->dmcu_init(dmcu);

	/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
	REG_WRITE(DIO_MEM_PWR_CTRL, 0);

	if (!dc->debug.disable_clock_gate) {
		/* enable all DCN clock gating */
		REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);

		REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);

		REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
	}

	enable_power_gating_plane(dc->hwseq, true);

	memset(&dc->res_pool->clk_mgr->clks, 0, sizeof(dc->res_pool->clk_mgr->clks));

	if (dc->hwss.init_pipes)
		dc->hwss.init_pipes(dc, dc->current_state);
}

static void reset_hw_ctx_wrap(
		struct dc *dc,
		struct dc_state *context)
{
	int i;

	/* Reset Back End*/
	for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
		struct pipe_ctx *pipe_ctx_old =
			&dc->current_state->res_ctx.pipe_ctx[i];
		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];

		if (!pipe_ctx_old->stream)
			continue;

		if (pipe_ctx_old->top_pipe)
			continue;

		if (!pipe_ctx->stream ||
				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
			struct clock_source *old_clk = pipe_ctx_old->clock_source;

			reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
			if (dc->hwss.enable_stream_gating) {
				dc->hwss.enable_stream_gating(dc, pipe_ctx);
			}
			if (old_clk)
				old_clk->funcs->cs_power_down(old_clk);
		}
	}
}

static bool patch_address_for_sbs_tb_stereo(
		struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
{
	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
	bool sec_split = pipe_ctx->top_pipe &&
			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
	if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
		(pipe_ctx->stream->timing.timing_3d_format ==
		 TIMING_3D_FORMAT_SIDE_BY_SIDE ||
		 pipe_ctx->stream->timing.timing_3d_format ==
		 TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
		*addr = plane_state->address.grph_stereo.left_addr;
		plane_state->address.grph_stereo.left_addr =
		plane_state->address.grph_stereo.right_addr;
		return true;
	} else {
		if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
			plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
			plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
			plane_state->address.grph_stereo.right_addr =
			plane_state->address.grph_stereo.left_addr;
		}
	}
	return false;
}



static void dcn10_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
{
	bool addr_patched = false;
	PHYSICAL_ADDRESS_LOC addr;
	struct dc_plane_state *plane_state = pipe_ctx->plane_state;

	if (plane_state == NULL)
		return;

	addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);

	pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
			pipe_ctx->plane_res.hubp,
			&plane_state->address,
			plane_state->flip_immediate,
			0);

	plane_state->status.requested_address = plane_state->address;

	if (plane_state->flip_immediate)
		plane_state->status.current_address = plane_state->address;

	if (addr_patched)
		pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
}

static bool dcn10_set_input_transfer_func(struct pipe_ctx *pipe_ctx,
					  const struct dc_plane_state *plane_state)
{
	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
	const struct dc_transfer_func *tf = NULL;
	bool result = true;

	if (dpp_base == NULL)
		return false;

	if (plane_state->in_transfer_func)
		tf = plane_state->in_transfer_func;

	if (plane_state->gamma_correction &&
		!dpp_base->ctx->dc->debug.always_use_regamma
		&& !plane_state->gamma_correction->is_identity
			&& dce_use_lut(plane_state->format))
		dpp_base->funcs->dpp_program_input_lut(dpp_base, plane_state->gamma_correction);

	if (tf == NULL)
		dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
	else if (tf->type == TF_TYPE_PREDEFINED) {
		switch (tf->tf) {
		case TRANSFER_FUNCTION_SRGB:
			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_sRGB);
			break;
		case TRANSFER_FUNCTION_BT709:
			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_xvYCC);
			break;
		case TRANSFER_FUNCTION_LINEAR:
			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
			break;
		case TRANSFER_FUNCTION_PQ:
		default:
			result = false;
			break;
		}
	} else if (tf->type == TF_TYPE_BYPASS) {
		dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
	} else {
		cm_helper_translate_curve_to_degamma_hw_format(tf,
					&dpp_base->degamma_params);
		dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
				&dpp_base->degamma_params);
		result = true;
	}

	return result;
}





static bool
dcn10_set_output_transfer_func(struct pipe_ctx *pipe_ctx,
			       const struct dc_stream_state *stream)
{
	struct dpp *dpp = pipe_ctx->plane_res.dpp;

	if (dpp == NULL)
		return false;

	dpp->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;

	if (stream->out_transfer_func &&
	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB)
		dpp->funcs->dpp_program_regamma_pwl(dpp, NULL, OPP_REGAMMA_SRGB);

	/* dcn10_translate_regamma_to_hw_format takes 750us, only do it when full
	 * update.
	 */
	else if (cm_helper_translate_curve_to_hw_format(
			stream->out_transfer_func,
			&dpp->regamma_params, false)) {
		dpp->funcs->dpp_program_regamma_pwl(
				dpp,
				&dpp->regamma_params, OPP_REGAMMA_USER);
	} else
		dpp->funcs->dpp_program_regamma_pwl(dpp, NULL, OPP_REGAMMA_BYPASS);

	return true;
}

static void dcn10_pipe_control_lock(
	struct dc *dc,
	struct pipe_ctx *pipe,
	bool lock)
{
	/* use TG master update lock to lock everything on the TG
	 * therefore only top pipe need to lock
	 */
	if (pipe->top_pipe)
		return;

	if (dc->debug.sanity_checks)
		dcn10_verify_allow_pstate_change_high(dc);

	if (lock)
		pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
	else
		pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);

	if (dc->debug.sanity_checks)
		dcn10_verify_allow_pstate_change_high(dc);
}

static bool wait_for_reset_trigger_to_occur(
	struct dc_context *dc_ctx,
	struct timing_generator *tg)
{
	bool rc = false;

	/* To avoid endless loop we wait at most
	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
	const uint32_t frames_to_wait_on_triggered_reset = 10;
	int i;

	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {

		if (!tg->funcs->is_counter_moving(tg)) {
			DC_ERROR("TG counter is not moving!\n");
			break;
		}

		if (tg->funcs->did_triggered_reset_occur(tg)) {
			rc = true;
			/* usually occurs at i=1 */
			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
					i);
			break;
		}

		/* Wait for one frame. */
		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
	}

	if (false == rc)
		DC_ERROR("GSL: Timeout on reset trigger!\n");

	return rc;
}

static void dcn10_enable_timing_synchronization(
	struct dc *dc,
	int group_index,
	int group_size,
	struct pipe_ctx *grouped_pipes[])
{
	struct dc_context *dc_ctx = dc->ctx;
	int i;

	DC_SYNC_INFO("Setting up OTG reset trigger\n");

	for (i = 1; i < group_size; i++)
		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
				grouped_pipes[i]->stream_res.tg,
				grouped_pipes[0]->stream_res.tg->inst);

	DC_SYNC_INFO("Waiting for trigger\n");

	/* Need to get only check 1 pipe for having reset as all the others are
	 * synchronized. Look at last pipe programmed to reset.
	 */

	wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[1]->stream_res.tg);
	for (i = 1; i < group_size; i++)
		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
				grouped_pipes[i]->stream_res.tg);

	DC_SYNC_INFO("Sync complete\n");
}

static void dcn10_enable_per_frame_crtc_position_reset(
	struct dc *dc,
	int group_size,
	struct pipe_ctx *grouped_pipes[])
{
	struct dc_context *dc_ctx = dc->ctx;
	int i;

	DC_SYNC_INFO("Setting up\n");
	for (i = 0; i < group_size; i++)
		if (grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset)
			grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
					grouped_pipes[i]->stream_res.tg,
					0,
					&grouped_pipes[i]->stream->triggered_crtc_reset);

	DC_SYNC_INFO("Waiting for trigger\n");

	for (i = 0; i < group_size; i++)
		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);

	DC_SYNC_INFO("Multi-display sync is complete\n");
}

/*static void print_rq_dlg_ttu(
		struct dc *core_dc,
		struct pipe_ctx *pipe_ctx)
{
	DC_LOG_BANDWIDTH_CALCS(core_dc->ctx->logger,
			"\n============== DML TTU Output parameters [%d] ==============\n"
			"qos_level_low_wm: %d, \n"
			"qos_level_high_wm: %d, \n"
			"min_ttu_vblank: %d, \n"
			"qos_level_flip: %d, \n"
			"refcyc_per_req_delivery_l: %d, \n"
			"qos_level_fixed_l: %d, \n"
			"qos_ramp_disable_l: %d, \n"
			"refcyc_per_req_delivery_pre_l: %d, \n"
			"refcyc_per_req_delivery_c: %d, \n"
			"qos_level_fixed_c: %d, \n"
			"qos_ramp_disable_c: %d, \n"
			"refcyc_per_req_delivery_pre_c: %d\n"
			"=============================================================\n",
			pipe_ctx->pipe_idx,
			pipe_ctx->ttu_regs.qos_level_low_wm,
			pipe_ctx->ttu_regs.qos_level_high_wm,
			pipe_ctx->ttu_regs.min_ttu_vblank,
			pipe_ctx->ttu_regs.qos_level_flip,
			pipe_ctx->ttu_regs.refcyc_per_req_delivery_l,
			pipe_ctx->ttu_regs.qos_level_fixed_l,
			pipe_ctx->ttu_regs.qos_ramp_disable_l,
			pipe_ctx->ttu_regs.refcyc_per_req_delivery_pre_l,
			pipe_ctx->ttu_regs.refcyc_per_req_delivery_c,
			pipe_ctx->ttu_regs.qos_level_fixed_c,
			pipe_ctx->ttu_regs.qos_ramp_disable_c,
			pipe_ctx->ttu_regs.refcyc_per_req_delivery_pre_c
			);

	DC_LOG_BANDWIDTH_CALCS(core_dc->ctx->logger,
			"\n============== DML DLG Output parameters [%d] ==============\n"
			"refcyc_h_blank_end: %d, \n"
			"dlg_vblank_end: %d, \n"
			"min_dst_y_next_start: %d, \n"
			"refcyc_per_htotal: %d, \n"
			"refcyc_x_after_scaler: %d, \n"
			"dst_y_after_scaler: %d, \n"
			"dst_y_prefetch: %d, \n"
			"dst_y_per_vm_vblank: %d, \n"
			"dst_y_per_row_vblank: %d, \n"
			"ref_freq_to_pix_freq: %d, \n"
			"vratio_prefetch: %d, \n"
			"refcyc_per_pte_group_vblank_l: %d, \n"
			"refcyc_per_meta_chunk_vblank_l: %d, \n"
			"dst_y_per_pte_row_nom_l: %d, \n"
			"refcyc_per_pte_group_nom_l: %d, \n",
			pipe_ctx->pipe_idx,
			pipe_ctx->dlg_regs.refcyc_h_blank_end,
			pipe_ctx->dlg_regs.dlg_vblank_end,
			pipe_ctx->dlg_regs.min_dst_y_next_start,
			pipe_ctx->dlg_regs.refcyc_per_htotal,
			pipe_ctx->dlg_regs.refcyc_x_after_scaler,
			pipe_ctx->dlg_regs.dst_y_after_scaler,
			pipe_ctx->dlg_regs.dst_y_prefetch,
			pipe_ctx->dlg_regs.dst_y_per_vm_vblank,
			pipe_ctx->dlg_regs.dst_y_per_row_vblank,
			pipe_ctx->dlg_regs.ref_freq_to_pix_freq,
			pipe_ctx->dlg_regs.vratio_prefetch,
			pipe_ctx->dlg_regs.refcyc_per_pte_group_vblank_l,
			pipe_ctx->dlg_regs.refcyc_per_meta_chunk_vblank_l,
			pipe_ctx->dlg_regs.dst_y_per_pte_row_nom_l,
			pipe_ctx->dlg_regs.refcyc_per_pte_group_nom_l
			);

	DC_LOG_BANDWIDTH_CALCS(core_dc->ctx->logger,
			"\ndst_y_per_meta_row_nom_l: %d, \n"
			"refcyc_per_meta_chunk_nom_l: %d, \n"
			"refcyc_per_line_delivery_pre_l: %d, \n"
			"refcyc_per_line_delivery_l: %d, \n"
			"vratio_prefetch_c: %d, \n"
			"refcyc_per_pte_group_vblank_c: %d, \n"
			"refcyc_per_meta_chunk_vblank_c: %d, \n"
			"dst_y_per_pte_row_nom_c: %d, \n"
			"refcyc_per_pte_group_nom_c: %d, \n"
			"dst_y_per_meta_row_nom_c: %d, \n"
			"refcyc_per_meta_chunk_nom_c: %d, \n"
			"refcyc_per_line_delivery_pre_c: %d, \n"
			"refcyc_per_line_delivery_c: %d \n"
			"========================================================\n",
			pipe_ctx->dlg_regs.dst_y_per_meta_row_nom_l,
			pipe_ctx->dlg_regs.refcyc_per_meta_chunk_nom_l,
			pipe_ctx->dlg_regs.refcyc_per_line_delivery_pre_l,
			pipe_ctx->dlg_regs.refcyc_per_line_delivery_l,
			pipe_ctx->dlg_regs.vratio_prefetch_c,
			pipe_ctx->dlg_regs.refcyc_per_pte_group_vblank_c,
			pipe_ctx->dlg_regs.refcyc_per_meta_chunk_vblank_c,
			pipe_ctx->dlg_regs.dst_y_per_pte_row_nom_c,
			pipe_ctx->dlg_regs.refcyc_per_pte_group_nom_c,
			pipe_ctx->dlg_regs.dst_y_per_meta_row_nom_c,
			pipe_ctx->dlg_regs.refcyc_per_meta_chunk_nom_c,
			pipe_ctx->dlg_regs.refcyc_per_line_delivery_pre_c,
			pipe_ctx->dlg_regs.refcyc_per_line_delivery_c
			);

	DC_LOG_BANDWIDTH_CALCS(core_dc->ctx->logger,
			"\n============== DML RQ Output parameters [%d] ==============\n"
			"chunk_size: %d \n"
			"min_chunk_size: %d \n"
			"meta_chunk_size: %d \n"
			"min_meta_chunk_size: %d \n"
			"dpte_group_size: %d \n"
			"mpte_group_size: %d \n"
			"swath_height: %d \n"
			"pte_row_height_linear: %d \n"
			"========================================================\n",
			pipe_ctx->pipe_idx,
			pipe_ctx->rq_regs.rq_regs_l.chunk_size,
			pipe_ctx->rq_regs.rq_regs_l.min_chunk_size,
			pipe_ctx->rq_regs.rq_regs_l.meta_chunk_size,
			pipe_ctx->rq_regs.rq_regs_l.min_meta_chunk_size,
			pipe_ctx->rq_regs.rq_regs_l.dpte_group_size,
			pipe_ctx->rq_regs.rq_regs_l.mpte_group_size,
			pipe_ctx->rq_regs.rq_regs_l.swath_height,
			pipe_ctx->rq_regs.rq_regs_l.pte_row_height_linear
			);
}
*/

static void mmhub_read_vm_system_aperture_settings(struct dcn10_hubp *hubp1,
		struct vm_system_aperture_param *apt,
		struct dce_hwseq *hws)
{
	PHYSICAL_ADDRESS_LOC physical_page_number;
	uint32_t logical_addr_low;
	uint32_t logical_addr_high;

	REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB,
			PHYSICAL_PAGE_NUMBER_MSB, &physical_page_number.high_part);
	REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB,
			PHYSICAL_PAGE_NUMBER_LSB, &physical_page_number.low_part);

	REG_GET(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
			LOGICAL_ADDR, &logical_addr_low);

	REG_GET(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
			LOGICAL_ADDR, &logical_addr_high);

	apt->sys_default.quad_part =  physical_page_number.quad_part << 12;
	apt->sys_low.quad_part =  (int64_t)logical_addr_low << 18;
	apt->sys_high.quad_part =  (int64_t)logical_addr_high << 18;
}

/* Temporary read settings, future will get values from kmd directly */
static void mmhub_read_vm_context0_settings(struct dcn10_hubp *hubp1,
		struct vm_context0_param *vm0,
		struct dce_hwseq *hws)
{
	PHYSICAL_ADDRESS_LOC fb_base;
	PHYSICAL_ADDRESS_LOC fb_offset;
	uint32_t fb_base_value;
	uint32_t fb_offset_value;

	REG_GET(DCHUBBUB_SDPIF_FB_BASE, SDPIF_FB_BASE, &fb_base_value);
	REG_GET(DCHUBBUB_SDPIF_FB_OFFSET, SDPIF_FB_OFFSET, &fb_offset_value);

	REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32,
			PAGE_DIRECTORY_ENTRY_HI32, &vm0->pte_base.high_part);
	REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32,
			PAGE_DIRECTORY_ENTRY_LO32, &vm0->pte_base.low_part);

	REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32,
			LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_start.high_part);
	REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32,
			LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_start.low_part);

	REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32,
			LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_end.high_part);
	REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32,
			LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_end.low_part);

	REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_HI32,
			PHYSICAL_PAGE_ADDR_HI4, &vm0->fault_default.high_part);
	REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_LO32,
			PHYSICAL_PAGE_ADDR_LO32, &vm0->fault_default.low_part);

	/*
	 * The values in VM_CONTEXT0_PAGE_TABLE_BASE_ADDR is in UMA space.
	 * Therefore we need to do
	 * DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR = VM_CONTEXT0_PAGE_TABLE_BASE_ADDR
	 * - DCHUBBUB_SDPIF_FB_OFFSET + DCHUBBUB_SDPIF_FB_BASE
	 */
	fb_base.quad_part = (uint64_t)fb_base_value << 24;
	fb_offset.quad_part = (uint64_t)fb_offset_value << 24;
	vm0->pte_base.quad_part += fb_base.quad_part;
	vm0->pte_base.quad_part -= fb_offset.quad_part;
}


void dcn10_program_pte_vm(struct dce_hwseq *hws, struct hubp *hubp)
{
	struct dcn10_hubp *hubp1 = TO_DCN10_HUBP(hubp);
	struct vm_system_aperture_param apt = { {{ 0 } } };
	struct vm_context0_param vm0 = { { { 0 } } };

	mmhub_read_vm_system_aperture_settings(hubp1, &apt, hws);
	mmhub_read_vm_context0_settings(hubp1, &vm0, hws);

	hubp->funcs->hubp_set_vm_system_aperture_settings(hubp, &apt);
	hubp->funcs->hubp_set_vm_context0_settings(hubp, &vm0);
}

static void dcn10_enable_plane(
	struct dc *dc,
	struct pipe_ctx *pipe_ctx,
	struct dc_state *context)
{
	struct dce_hwseq *hws = dc->hwseq;

	if (dc->debug.sanity_checks) {
		dcn10_verify_allow_pstate_change_high(dc);
	}

	undo_DEGVIDCN10_253_wa(dc);

	power_on_plane(dc->hwseq,
		pipe_ctx->plane_res.hubp->inst);

	/* enable DCFCLK current DCHUB */
	pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);

	/* make sure OPP_PIPE_CLOCK_EN = 1 */
	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
			pipe_ctx->stream_res.opp,
			true);

/* TODO: enable/disable in dm as per update type.
	if (plane_state) {
		DC_LOG_DC(dc->ctx->logger,
				"Pipe:%d 0x%x: addr hi:0x%x, "
				"addr low:0x%x, "
				"src: %d, %d, %d,"
				" %d; dst: %d, %d, %d, %d;\n",
				pipe_ctx->pipe_idx,
				plane_state,
				plane_state->address.grph.addr.high_part,
				plane_state->address.grph.addr.low_part,
				plane_state->src_rect.x,
				plane_state->src_rect.y,
				plane_state->src_rect.width,
				plane_state->src_rect.height,
				plane_state->dst_rect.x,
				plane_state->dst_rect.y,
				plane_state->dst_rect.width,
				plane_state->dst_rect.height);

		DC_LOG_DC(dc->ctx->logger,
				"Pipe %d: width, height, x, y         format:%d\n"
				"viewport:%d, %d, %d, %d\n"
				"recout:  %d, %d, %d, %d\n",
				pipe_ctx->pipe_idx,
				plane_state->format,
				pipe_ctx->plane_res.scl_data.viewport.width,
				pipe_ctx->plane_res.scl_data.viewport.height,
				pipe_ctx->plane_res.scl_data.viewport.x,
				pipe_ctx->plane_res.scl_data.viewport.y,
				pipe_ctx->plane_res.scl_data.recout.width,
				pipe_ctx->plane_res.scl_data.recout.height,
				pipe_ctx->plane_res.scl_data.recout.x,
				pipe_ctx->plane_res.scl_data.recout.y);
		print_rq_dlg_ttu(dc, pipe_ctx);
	}
*/
	if (dc->config.gpu_vm_support)
		dcn10_program_pte_vm(hws, pipe_ctx->plane_res.hubp);

	if (dc->debug.sanity_checks) {
		dcn10_verify_allow_pstate_change_high(dc);
	}
}

static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
{
	int i = 0;
	struct dpp_grph_csc_adjustment adjust;
	memset(&adjust, 0, sizeof(adjust));
	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;


	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
			adjust.temperature_matrix[i] =
				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
	}

	pipe_ctx->plane_res.dpp->funcs->dpp_set_gamut_remap(pipe_ctx->plane_res.dpp, &adjust);
}

static void dcn10_program_output_csc(struct dc *dc,
		struct pipe_ctx *pipe_ctx,
		enum dc_color_space colorspace,
		uint16_t *matrix,
		int opp_id)
{
	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
		if (pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment != NULL)
			pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment(pipe_ctx->plane_res.dpp, matrix);
	} else {
		if (pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_default != NULL)
			pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_default(pipe_ctx->plane_res.dpp, colorspace);
	}
}

bool is_lower_pipe_tree_visible(struct pipe_ctx *pipe_ctx)
{
	if (pipe_ctx->plane_state->visible)
		return true;
	if (pipe_ctx->bottom_pipe && is_lower_pipe_tree_visible(pipe_ctx->bottom_pipe))
		return true;
	return false;
}

bool is_upper_pipe_tree_visible(struct pipe_ctx *pipe_ctx)
{
	if (pipe_ctx->plane_state->visible)
		return true;
	if (pipe_ctx->top_pipe && is_upper_pipe_tree_visible(pipe_ctx->top_pipe))
		return true;
	return false;
}

bool is_pipe_tree_visible(struct pipe_ctx *pipe_ctx)
{
	if (pipe_ctx->plane_state->visible)
		return true;
	if (pipe_ctx->top_pipe && is_upper_pipe_tree_visible(pipe_ctx->top_pipe))
		return true;
	if (pipe_ctx->bottom_pipe && is_lower_pipe_tree_visible(pipe_ctx->bottom_pipe))
		return true;
	return false;
}

bool is_rgb_cspace(enum dc_color_space output_color_space)
{
	switch (output_color_space) {
	case COLOR_SPACE_SRGB:
	case COLOR_SPACE_SRGB_LIMITED:
	case COLOR_SPACE_2020_RGB_FULLRANGE:
	case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
	case COLOR_SPACE_ADOBERGB:
		return true;
	case COLOR_SPACE_YCBCR601:
	case COLOR_SPACE_YCBCR709:
	case COLOR_SPACE_YCBCR601_LIMITED:
	case COLOR_SPACE_YCBCR709_LIMITED:
	case COLOR_SPACE_2020_YCBCR:
		return false;
	default:
		/* Add a case to switch */
		BREAK_TO_DEBUGGER();
		return false;
	}
}

void dcn10_get_surface_visual_confirm_color(
		const struct pipe_ctx *pipe_ctx,
		struct tg_color *color)
{
	uint32_t color_value = MAX_TG_COLOR_VALUE;

	switch (pipe_ctx->plane_res.scl_data.format) {
	case PIXEL_FORMAT_ARGB8888:
		/* set boarder color to red */
		color->color_r_cr = color_value;
		break;

	case PIXEL_FORMAT_ARGB2101010:
		/* set boarder color to blue */
		color->color_b_cb = color_value;
		break;
	case PIXEL_FORMAT_420BPP8:
		/* set boarder color to green */
		color->color_g_y = color_value;
		break;
	case PIXEL_FORMAT_420BPP10:
		/* set boarder color to yellow */
		color->color_g_y = color_value;
		color->color_r_cr = color_value;
		break;
	case PIXEL_FORMAT_FP16:
		/* set boarder color to white */
		color->color_r_cr = color_value;
		color->color_b_cb = color_value;
		color->color_g_y = color_value;
		break;
	default:
		break;
	}
}

void dcn10_get_hdr_visual_confirm_color(
		struct pipe_ctx *pipe_ctx,
		struct tg_color *color)
{
	uint32_t color_value = MAX_TG_COLOR_VALUE;

	// Determine the overscan color based on the top-most (desktop) plane's context
	struct pipe_ctx *top_pipe_ctx  = pipe_ctx;

	while (top_pipe_ctx->top_pipe != NULL)
		top_pipe_ctx = top_pipe_ctx->top_pipe;

	switch (top_pipe_ctx->plane_res.scl_data.format) {
	case PIXEL_FORMAT_ARGB2101010:
		if (top_pipe_ctx->stream->out_transfer_func->tf == TRANSFER_FUNCTION_UNITY) {
			/* HDR10, ARGB2101010 - set boarder color to red */
			color->color_r_cr = color_value;
		}
		break;
	case PIXEL_FORMAT_FP16:
		if (top_pipe_ctx->stream->out_transfer_func->tf == TRANSFER_FUNCTION_PQ) {
			/* HDR10, FP16 - set boarder color to blue */
			color->color_b_cb = color_value;
		} else if (top_pipe_ctx->stream->out_transfer_func->tf == TRANSFER_FUNCTION_GAMMA22) {
			/* FreeSync 2 HDR - set boarder color to green */
			color->color_g_y = color_value;
		}
		break;
	default:
		/* SDR - set boarder color to Gray */
		color->color_r_cr = color_value/2;
		color->color_b_cb = color_value/2;
		color->color_g_y = color_value/2;
		break;
	}
}

static uint16_t fixed_point_to_int_frac(
	struct fixed31_32 arg,
	uint8_t integer_bits,
	uint8_t fractional_bits)
{
	int32_t numerator;
	int32_t divisor = 1 << fractional_bits;

	uint16_t result;

	uint16_t d = (uint16_t)dc_fixpt_floor(
		dc_fixpt_abs(
			arg));

	if (d <= (uint16_t)(1 << integer_bits) - (1 / (uint16_t)divisor))
		numerator = (uint16_t)dc_fixpt_floor(
			dc_fixpt_mul_int(
				arg,
				divisor));
	else {
		numerator = dc_fixpt_floor(
			dc_fixpt_sub(
				dc_fixpt_from_int(
					1LL << integer_bits),
				dc_fixpt_recip(
					dc_fixpt_from_int(
						divisor))));
	}

	if (numerator >= 0)
		result = (uint16_t)numerator;
	else
		result = (uint16_t)(
		(1 << (integer_bits + fractional_bits + 1)) + numerator);

	if ((result != 0) && dc_fixpt_lt(
		arg, dc_fixpt_zero))
		result |= 1 << (integer_bits + fractional_bits);

	return result;
}

void build_prescale_params(struct  dc_bias_and_scale *bias_and_scale,
		const struct dc_plane_state *plane_state)
{
	if (plane_state->format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN
			&& plane_state->format != SURFACE_PIXEL_FORMAT_INVALID
			&& plane_state->input_csc_color_matrix.enable_adjustment
			&& plane_state->coeff_reduction_factor.value != 0) {
		bias_and_scale->scale_blue = fixed_point_to_int_frac(
			dc_fixpt_mul(plane_state->coeff_reduction_factor,
					dc_fixpt_from_fraction(256, 255)),
				2,
				13);
		bias_and_scale->scale_red = bias_and_scale->scale_blue;
		bias_and_scale->scale_green = bias_and_scale->scale_blue;
	} else {
		bias_and_scale->scale_blue = 0x2000;
		bias_and_scale->scale_red = 0x2000;
		bias_and_scale->scale_green = 0x2000;
	}
}

static void update_dpp(struct dpp *dpp, struct dc_plane_state *plane_state)
{
	struct dc_bias_and_scale bns_params = {0};

	// program the input csc
	dpp->funcs->dpp_setup(dpp,
			plane_state->format,
			EXPANSION_MODE_ZERO,
			plane_state->input_csc_color_matrix,
			COLOR_SPACE_YCBCR601_LIMITED);

	//set scale and bias registers
	build_prescale_params(&bns_params, plane_state);
	if (dpp->funcs->dpp_program_bias_and_scale)
		dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params);
}

static void dcn10_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
	struct hubp *hubp = pipe_ctx->plane_res.hubp;
	struct mpcc_blnd_cfg blnd_cfg = {{0}};
	bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
	int mpcc_id;
	struct mpcc *new_mpcc;
	struct mpc *mpc = dc->res_pool->mpc;
	struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);

	if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) {
		dcn10_get_hdr_visual_confirm_color(
				pipe_ctx, &blnd_cfg.black_color);
	} else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) {
		dcn10_get_surface_visual_confirm_color(
				pipe_ctx, &blnd_cfg.black_color);
	} else {
		color_space_to_black_color(
				dc, pipe_ctx->stream->output_color_space,
				&blnd_cfg.black_color);
	}

	if (per_pixel_alpha)
		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
	else
		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;

	blnd_cfg.overlap_only = false;
	blnd_cfg.global_gain = 0xff;

	if (pipe_ctx->plane_state->global_alpha)
		blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
	else
		blnd_cfg.global_alpha = 0xff;

	/* DCN1.0 has output CM before MPC which seems to screw with
	 * pre-multiplied alpha.
	 */
	blnd_cfg.pre_multiplied_alpha = is_rgb_cspace(
			pipe_ctx->stream->output_color_space)
					&& per_pixel_alpha;


	/*
	 * TODO: remove hack
	 * Note: currently there is a bug in init_hw such that
	 * on resume from hibernate, BIOS sets up MPCC0, and
	 * we do mpcc_remove but the mpcc cannot go to idle
	 * after remove. This cause us to pick mpcc1 here,
	 * which causes a pstate hang for yet unknown reason.
	 */
	mpcc_id = hubp->inst;

	/* If there is no full update, don't need to touch MPC tree*/
	if (!pipe_ctx->plane_state->update_flags.bits.full_update) {
		mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
		return;
	}

	/* check if this MPCC is already being used */
	new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id);
	/* remove MPCC if being used */
	if (new_mpcc != NULL)
		mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc);
	else
		if (dc->debug.sanity_checks)
			mpc->funcs->assert_mpcc_idle_before_connect(
					dc->res_pool->mpc, mpcc_id);

	/* Call MPC to insert new plane */
	new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
			mpc_tree_params,
			&blnd_cfg,
			NULL,
			NULL,
			hubp->inst,
			mpcc_id);

	ASSERT(new_mpcc != NULL);

	hubp->opp_id = pipe_ctx->stream_res.opp->inst;
	hubp->mpcc_id = mpcc_id;
}

static void update_scaler(struct pipe_ctx *pipe_ctx)
{
	bool per_pixel_alpha =
			pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;

	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = per_pixel_alpha;
	pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
	/* scaler configuration */
	pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler(
			pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data);
}

void update_dchubp_dpp(
	struct dc *dc,
	struct pipe_ctx *pipe_ctx,
	struct dc_state *context)
{
	struct hubp *hubp = pipe_ctx->plane_res.hubp;
	struct dpp *dpp = pipe_ctx->plane_res.dpp;
	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
	union plane_size size = plane_state->plane_size;
	unsigned int compat_level = 0;

	/* depends on DML calculation, DPP clock value may change dynamically */
	/* If request max dpp clk is lower than current dispclk, no need to
	 * divided by 2
	 */
	if (plane_state->update_flags.bits.full_update) {
		bool should_divided_by_2 = context->bw.dcn.clk.dppclk_khz <=
				dc->res_pool->clk_mgr->clks.dispclk_khz / 2;

		dpp->funcs->dpp_dppclk_control(
				dpp,
				should_divided_by_2,
				true);

		if (dc->res_pool->dccg)
			dc->res_pool->dccg->funcs->update_dpp_dto(
					dc->res_pool->dccg,
					dpp->inst,
					pipe_ctx->plane_res.bw.dppclk_khz);
		else
			dc->res_pool->clk_mgr->clks.dppclk_khz = should_divided_by_2 ?
						dc->res_pool->clk_mgr->clks.dispclk_khz / 2 :
							dc->res_pool->clk_mgr->clks.dispclk_khz;
	}

	/* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG
	 * VTG is within DCHUBBUB which is commond block share by each pipe HUBP.
	 * VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG
	 */
	if (plane_state->update_flags.bits.full_update) {
		hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst);

		hubp->funcs->hubp_setup(
			hubp,
			&pipe_ctx->dlg_regs,
			&pipe_ctx->ttu_regs,
			&pipe_ctx->rq_regs,
			&pipe_ctx->pipe_dlg_param);
		hubp->funcs->hubp_setup_interdependent(
			hubp,
			&pipe_ctx->dlg_regs,
			&pipe_ctx->ttu_regs);
	}

	size.grph.surface_size = pipe_ctx->plane_res.scl_data.viewport;

	if (plane_state->update_flags.bits.full_update ||
		plane_state->update_flags.bits.bpp_change)
		update_dpp(dpp, plane_state);

	if (plane_state->update_flags.bits.full_update ||
		plane_state->update_flags.bits.per_pixel_alpha_change ||
		plane_state->update_flags.bits.global_alpha_change)
		dc->hwss.update_mpcc(dc, pipe_ctx);

	if (plane_state->update_flags.bits.full_update ||
		plane_state->update_flags.bits.per_pixel_alpha_change ||
		plane_state->update_flags.bits.global_alpha_change ||
		plane_state->update_flags.bits.scaling_change ||
		plane_state->update_flags.bits.position_change) {
		update_scaler(pipe_ctx);
	}

	if (plane_state->update_flags.bits.full_update ||
		plane_state->update_flags.bits.scaling_change ||
		plane_state->update_flags.bits.position_change) {
		hubp->funcs->mem_program_viewport(
			hubp,
			&pipe_ctx->plane_res.scl_data.viewport,
			&pipe_ctx->plane_res.scl_data.viewport_c);
	}

	if (pipe_ctx->stream->cursor_attributes.address.quad_part != 0) {
		dc->hwss.set_cursor_position(pipe_ctx);
		dc->hwss.set_cursor_attribute(pipe_ctx);
	}

	if (plane_state->update_flags.bits.full_update) {
		/*gamut remap*/
		program_gamut_remap(pipe_ctx);

		dc->hwss.program_output_csc(dc,
				pipe_ctx,
				pipe_ctx->stream->output_color_space,
				pipe_ctx->stream->csc_color_matrix.matrix,
				hubp->opp_id);
	}

	if (plane_state->update_flags.bits.full_update ||
		plane_state->update_flags.bits.pixel_format_change ||
		plane_state->update_flags.bits.horizontal_mirror_change ||
		plane_state->update_flags.bits.rotation_change ||
		plane_state->update_flags.bits.swizzle_change ||
		plane_state->update_flags.bits.dcc_change ||
		plane_state->update_flags.bits.bpp_change ||
		plane_state->update_flags.bits.scaling_change ||
		plane_state->update_flags.bits.plane_size_change) {
		hubp->funcs->hubp_program_surface_config(
			hubp,
			plane_state->format,
			&plane_state->tiling_info,
			&size,
			plane_state->rotation,
			&plane_state->dcc,
			plane_state->horizontal_mirror,
			compat_level);
	}

	hubp->power_gated = false;

	dc->hwss.update_plane_addr(dc, pipe_ctx);

	if (is_pipe_tree_visible(pipe_ctx))
		hubp->funcs->set_blank(hubp, false);
}

static void dcn10_blank_pixel_data(
		struct dc *dc,
		struct pipe_ctx *pipe_ctx,
		bool blank)
{
	enum dc_color_space color_space;
	struct tg_color black_color = {0};
	struct stream_resource *stream_res = &pipe_ctx->stream_res;
	struct dc_stream_state *stream = pipe_ctx->stream;

	/* program otg blank color */
	color_space = stream->output_color_space;
	color_space_to_black_color(dc, color_space, &black_color);

	/*
	 * The way 420 is packed, 2 channels carry Y component, 1 channel
	 * alternate between Cb and Cr, so both channels need the pixel
	 * value for Y
	 */
	if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
		black_color.color_r_cr = black_color.color_g_y;


	if (stream_res->tg->funcs->set_blank_color)
		stream_res->tg->funcs->set_blank_color(
				stream_res->tg,
				&black_color);

	if (!blank) {
		if (stream_res->tg->funcs->set_blank)
			stream_res->tg->funcs->set_blank(stream_res->tg, blank);
		if (stream_res->abm) {
			stream_res->abm->funcs->set_pipe(stream_res->abm, stream_res->tg->inst + 1);
			stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level);
		}
	} else if (blank) {
		if (stream_res->abm)
			stream_res->abm->funcs->set_abm_immediate_disable(stream_res->abm);
		if (stream_res->tg->funcs->set_blank)
			stream_res->tg->funcs->set_blank(stream_res->tg, blank);
	}
}

void set_hdr_multiplier(struct pipe_ctx *pipe_ctx)
{
	struct fixed31_32 multiplier = dc_fixpt_from_fraction(
			pipe_ctx->plane_state->sdr_white_level, 80);
	uint32_t hw_mult = 0x1f000; // 1.0 default multiplier
	struct custom_float_format fmt;

	fmt.exponenta_bits = 6;
	fmt.mantissa_bits = 12;
	fmt.sign = true;

	if (pipe_ctx->plane_state->sdr_white_level > 80)
		convert_to_custom_float_format(multiplier, &fmt, &hw_mult);

	pipe_ctx->plane_res.dpp->funcs->dpp_set_hdr_multiplier(
			pipe_ctx->plane_res.dpp, hw_mult);
}

void dcn10_program_pipe(
		struct dc *dc,
		struct pipe_ctx *pipe_ctx,
		struct dc_state *context)
{
	if (pipe_ctx->plane_state->update_flags.bits.full_update)
		dcn10_enable_plane(dc, pipe_ctx, context);

	update_dchubp_dpp(dc, pipe_ctx, context);

	set_hdr_multiplier(pipe_ctx);

	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
			pipe_ctx->plane_state->update_flags.bits.gamma_change)
		dc->hwss.set_input_transfer_func(pipe_ctx, pipe_ctx->plane_state);

	/* dcn10_translate_regamma_to_hw_format takes 750us to finish
	 * only do gamma programming for full update.
	 * TODO: This can be further optimized/cleaned up
	 * Always call this for now since it does memcmp inside before
	 * doing heavy calculation and programming
	 */
	if (pipe_ctx->plane_state->update_flags.bits.full_update)
		dc->hwss.set_output_transfer_func(pipe_ctx, pipe_ctx->stream);
}

static void program_all_pipe_in_tree(
		struct dc *dc,
		struct pipe_ctx *pipe_ctx,
		struct dc_state *context)
{
	if (pipe_ctx->top_pipe == NULL) {
		bool blank = !is_pipe_tree_visible(pipe_ctx);

		pipe_ctx->stream_res.tg->dlg_otg_param.vready_offset = pipe_ctx->pipe_dlg_param.vready_offset;
		pipe_ctx->stream_res.tg->dlg_otg_param.vstartup_start = pipe_ctx->pipe_dlg_param.vstartup_start;
		pipe_ctx->stream_res.tg->dlg_otg_param.vupdate_offset = pipe_ctx->pipe_dlg_param.vupdate_offset;
		pipe_ctx->stream_res.tg->dlg_otg_param.vupdate_width = pipe_ctx->pipe_dlg_param.vupdate_width;
		pipe_ctx->stream_res.tg->dlg_otg_param.signal =  pipe_ctx->stream->signal;

		pipe_ctx->stream_res.tg->funcs->program_global_sync(
				pipe_ctx->stream_res.tg);

		dc->hwss.blank_pixel_data(dc, pipe_ctx, blank);

	}

	if (pipe_ctx->plane_state != NULL)
		dcn10_program_pipe(dc, pipe_ctx, context);

	if (pipe_ctx->bottom_pipe != NULL && pipe_ctx->bottom_pipe != pipe_ctx)
		program_all_pipe_in_tree(dc, pipe_ctx->bottom_pipe, context);
}

struct pipe_ctx *find_top_pipe_for_stream(
		struct dc *dc,
		struct dc_state *context,
		const struct dc_stream_state *stream)
{
	int i;

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
		struct pipe_ctx *old_pipe_ctx =
				&dc->current_state->res_ctx.pipe_ctx[i];

		if (!pipe_ctx->plane_state && !old_pipe_ctx->plane_state)
			continue;

		if (pipe_ctx->stream != stream)
			continue;

		if (!pipe_ctx->top_pipe)
			return pipe_ctx;
	}
	return NULL;
}

static void dcn10_apply_ctx_for_surface(
		struct dc *dc,
		const struct dc_stream_state *stream,
		int num_planes,
		struct dc_state *context)
{
	int i;
	struct timing_generator *tg;
	bool removed_pipe[4] = { false };
	struct pipe_ctx *top_pipe_to_program =
			find_top_pipe_for_stream(dc, context, stream);
	DC_LOGGER_INIT(dc->ctx->logger);

	if (!top_pipe_to_program)
		return;

	tg = top_pipe_to_program->stream_res.tg;

	dcn10_pipe_control_lock(dc, top_pipe_to_program, true);

	if (num_planes == 0) {
		/* OTG blank before remove all front end */
		dc->hwss.blank_pixel_data(dc, top_pipe_to_program, true);
	}

	/* Disconnect unused mpcc */
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
		struct pipe_ctx *old_pipe_ctx =
				&dc->current_state->res_ctx.pipe_ctx[i];
		/*
		 * Powergate reused pipes that are not powergated
		 * fairly hacky right now, using opp_id as indicator
		 * TODO: After move dc_post to dc_update, this will
		 * be removed.
		 */
		if (pipe_ctx->plane_state && !old_pipe_ctx->plane_state) {
			if (old_pipe_ctx->stream_res.tg == tg &&
				old_pipe_ctx->plane_res.hubp &&
				old_pipe_ctx->plane_res.hubp->opp_id != 0xf) {
				dcn10_disable_plane(dc, old_pipe_ctx);
				/*
				 * power down fe will unlock when calling reset, need
				 * to lock it back here. Messy, need rework.
				 */
				pipe_ctx->stream_res.tg->funcs->lock(pipe_ctx->stream_res.tg);
			}
		}

		if ((!pipe_ctx->plane_state ||
		     pipe_ctx->stream_res.tg != old_pipe_ctx->stream_res.tg) &&
		    old_pipe_ctx->plane_state &&
		    old_pipe_ctx->stream_res.tg == tg) {

			dc->hwss.plane_atomic_disconnect(dc, old_pipe_ctx);
			removed_pipe[i] = true;

			DC_LOG_DC("Reset mpcc for pipe %d\n",
					old_pipe_ctx->pipe_idx);
		}
	}

	if (num_planes > 0)
		program_all_pipe_in_tree(dc, top_pipe_to_program, context);

	dcn10_pipe_control_lock(dc, top_pipe_to_program, false);

	if (top_pipe_to_program->plane_state &&
			top_pipe_to_program->plane_state->update_flags.bits.full_update)
		for (i = 0; i < dc->res_pool->pipe_count; i++) {
			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
			tg = pipe_ctx->stream_res.tg;
			/* Skip inactive pipes and ones already updated */
			if (!pipe_ctx->stream || pipe_ctx->stream == stream
					|| !pipe_ctx->plane_state
					|| !tg->funcs->is_tg_enabled(tg))
				continue;

			tg->funcs->lock(tg);

			pipe_ctx->plane_res.hubp->funcs->hubp_setup_interdependent(
				pipe_ctx->plane_res.hubp,
				&pipe_ctx->dlg_regs,
				&pipe_ctx->ttu_regs);

			tg->funcs->unlock(tg);
		}

	if (num_planes == 0)
		false_optc_underflow_wa(dc, stream, tg);

	for (i = 0; i < dc->res_pool->pipe_count; i++)
		if (removed_pipe[i])
			dcn10_disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]);

	if (dc->hwseq->wa.DEGVIDCN10_254)
		hubbub1_wm_change_req_wa(dc->res_pool->hubbub);
}

static void dcn10_stereo_hw_frame_pack_wa(struct dc *dc, struct dc_state *context)
{
	uint8_t i;

	for (i = 0; i < context->stream_count; i++) {
		if (context->streams[i]->timing.timing_3d_format
				== TIMING_3D_FORMAT_HW_FRAME_PACKING) {
			/*
			 * Disable stutter
			 */
			hubbub1_allow_self_refresh_control(dc->res_pool->hubbub, false);
			break;
		}
	}
}

static void dcn10_prepare_bandwidth(
		struct dc *dc,
		struct dc_state *context)
{
	if (dc->debug.sanity_checks)
		dcn10_verify_allow_pstate_change_high(dc);

	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
		if (context->stream_count == 0)
			context->bw.dcn.clk.phyclk_khz = 0;

		dc->res_pool->clk_mgr->funcs->update_clocks(
				dc->res_pool->clk_mgr,
				context,
				false);
	}

	hubbub1_program_watermarks(dc->res_pool->hubbub,
			&context->bw.dcn.watermarks,
			dc->res_pool->ref_clock_inKhz / 1000,
			true);
	dcn10_stereo_hw_frame_pack_wa(dc, context);

	if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE)
		dcn_bw_notify_pplib_of_wm_ranges(dc);

	if (dc->debug.sanity_checks)
		dcn10_verify_allow_pstate_change_high(dc);
}

static void dcn10_optimize_bandwidth(
		struct dc *dc,
		struct dc_state *context)
{
	if (dc->debug.sanity_checks)
		dcn10_verify_allow_pstate_change_high(dc);

	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
		if (context->stream_count == 0)
			context->bw.dcn.clk.phyclk_khz = 0;

		dc->res_pool->clk_mgr->funcs->update_clocks(
				dc->res_pool->clk_mgr,
				context,
				true);
	}

	hubbub1_program_watermarks(dc->res_pool->hubbub,
			&context->bw.dcn.watermarks,
			dc->res_pool->ref_clock_inKhz / 1000,
			true);
	dcn10_stereo_hw_frame_pack_wa(dc, context);

	if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE)
		dcn_bw_notify_pplib_of_wm_ranges(dc);

	if (dc->debug.sanity_checks)
		dcn10_verify_allow_pstate_change_high(dc);
}

static void set_drr(struct pipe_ctx **pipe_ctx,
		int num_pipes, int vmin, int vmax)
{
	int i = 0;
	struct drr_params params = {0};
	// DRR should set trigger event to monitor surface update event
	unsigned int event_triggers = 0x80;

	params.vertical_total_max = vmax;
	params.vertical_total_min = vmin;

	/* TODO: If multiple pipes are to be supported, you need
	 * some GSL stuff. Static screen triggers may be programmed differently
	 * as well.
	 */
	for (i = 0; i < num_pipes; i++) {
		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
			pipe_ctx[i]->stream_res.tg, &params);
		if (vmax != 0 && vmin != 0)
			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
					pipe_ctx[i]->stream_res.tg,
					event_triggers);
	}
}

static void get_position(struct pipe_ctx **pipe_ctx,
		int num_pipes,
		struct crtc_position *position)
{
	int i = 0;

	/* TODO: handle pipes > 1
	 */
	for (i = 0; i < num_pipes; i++)
		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
}

static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
		int num_pipes, const struct dc_static_screen_events *events)
{
	unsigned int i;
	unsigned int value = 0;

	if (events->surface_update)
		value |= 0x80;
	if (events->cursor_update)
		value |= 0x2;
	if (events->force_trigger)
		value |= 0x1;

	for (i = 0; i < num_pipes; i++)
		pipe_ctx[i]->stream_res.tg->funcs->
			set_static_screen_control(pipe_ctx[i]->stream_res.tg, value);
}

static void dcn10_config_stereo_parameters(
		struct dc_stream_state *stream, struct crtc_stereo_flags *flags)
{
	enum view_3d_format view_format = stream->view_format;
	enum dc_timing_3d_format timing_3d_format =\
			stream->timing.timing_3d_format;
	bool non_stereo_timing = false;

	if (timing_3d_format == TIMING_3D_FORMAT_NONE ||
		timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE ||
		timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM)
		non_stereo_timing = true;

	if (non_stereo_timing == false &&
		view_format == VIEW_3D_FORMAT_FRAME_SEQUENTIAL) {

		flags->PROGRAM_STEREO         = 1;
		flags->PROGRAM_POLARITY       = 1;
		if (timing_3d_format == TIMING_3D_FORMAT_INBAND_FA ||
			timing_3d_format == TIMING_3D_FORMAT_DP_HDMI_INBAND_FA ||
			timing_3d_format == TIMING_3D_FORMAT_SIDEBAND_FA) {
			enum display_dongle_type dongle = \
					stream->link->ddc->dongle_type;
			if (dongle == DISPLAY_DONGLE_DP_VGA_CONVERTER ||
				dongle == DISPLAY_DONGLE_DP_DVI_CONVERTER ||
				dongle == DISPLAY_DONGLE_DP_HDMI_CONVERTER)
				flags->DISABLE_STEREO_DP_SYNC = 1;
		}
		flags->RIGHT_EYE_POLARITY =\
				stream->timing.flags.RIGHT_EYE_3D_POLARITY;
		if (timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
			flags->FRAME_PACKED = 1;
	}

	return;
}

static void dcn10_setup_stereo(struct pipe_ctx *pipe_ctx, struct dc *dc)
{
	struct crtc_stereo_flags flags = { 0 };
	struct dc_stream_state *stream = pipe_ctx->stream;

	dcn10_config_stereo_parameters(stream, &flags);

	pipe_ctx->stream_res.opp->funcs->opp_program_stereo(
		pipe_ctx->stream_res.opp,
		flags.PROGRAM_STEREO == 1 ? true:false,
		&stream->timing);

	pipe_ctx->stream_res.tg->funcs->program_stereo(
		pipe_ctx->stream_res.tg,
		&stream->timing,
		&flags);

	return;
}

static struct hubp *get_hubp_by_inst(struct resource_pool *res_pool, int mpcc_inst)
{
	int i;

	for (i = 0; i < res_pool->pipe_count; i++) {
		if (res_pool->hubps[i]->inst == mpcc_inst)
			return res_pool->hubps[i];
	}
	ASSERT(false);
	return NULL;
}

static void dcn10_wait_for_mpcc_disconnect(
		struct dc *dc,
		struct resource_pool *res_pool,
		struct pipe_ctx *pipe_ctx)
{
	int mpcc_inst;

	if (dc->debug.sanity_checks) {
		dcn10_verify_allow_pstate_change_high(dc);
	}

	if (!pipe_ctx->stream_res.opp)
		return;

	for (mpcc_inst = 0; mpcc_inst < MAX_PIPES; mpcc_inst++) {
		if (pipe_ctx->stream_res.opp->mpcc_disconnect_pending[mpcc_inst]) {
			struct hubp *hubp = get_hubp_by_inst(res_pool, mpcc_inst);

			res_pool->mpc->funcs->wait_for_idle(res_pool->mpc, mpcc_inst);
			pipe_ctx->stream_res.opp->mpcc_disconnect_pending[mpcc_inst] = false;
			hubp->funcs->set_blank(hubp, true);
			/*DC_LOG_ERROR(dc->ctx->logger,
					"[debug_mpo: wait_for_mpcc finished waiting on mpcc %d]\n",
					i);*/
		}
	}

	if (dc->debug.sanity_checks) {
		dcn10_verify_allow_pstate_change_high(dc);
	}

}

static bool dcn10_dummy_display_power_gating(
	struct dc *dc,
	uint8_t controller_id,
	struct dc_bios *dcb,
	enum pipe_gating_control power_gating)
{
	return true;
}

static void dcn10_update_pending_status(struct pipe_ctx *pipe_ctx)
{
	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
	struct timing_generator *tg = pipe_ctx->stream_res.tg;
	bool flip_pending;

	if (plane_state == NULL)
		return;

	flip_pending = pipe_ctx->plane_res.hubp->funcs->hubp_is_flip_pending(
					pipe_ctx->plane_res.hubp);

	plane_state->status.is_flip_pending = flip_pending;

	if (!flip_pending)
		plane_state->status.current_address = plane_state->status.requested_address;

	if (plane_state->status.current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
			tg->funcs->is_stereo_left_eye) {
		plane_state->status.is_right_eye =
				!tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
	}
}

static void dcn10_update_dchub(struct dce_hwseq *hws, struct dchub_init_data *dh_data)
{
	if (hws->ctx->dc->res_pool->hubbub != NULL) {
		struct hubp *hubp = hws->ctx->dc->res_pool->hubps[0];

		if (hubp->funcs->hubp_update_dchub)
			hubp->funcs->hubp_update_dchub(hubp, dh_data);
		else
			hubbub1_update_dchub(hws->ctx->dc->res_pool->hubbub, dh_data);
	}
}

static void dcn10_set_cursor_position(struct pipe_ctx *pipe_ctx)
{
	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
	struct hubp *hubp = pipe_ctx->plane_res.hubp;
	struct dpp *dpp = pipe_ctx->plane_res.dpp;
	struct dc_cursor_mi_param param = {
		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clock_inKhz,
		.viewport = pipe_ctx->plane_res.scl_data.viewport,
		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
		.rotation = pipe_ctx->plane_state->rotation,
		.mirror = pipe_ctx->plane_state->horizontal_mirror
	};

	pos_cpy.x_hotspot += pipe_ctx->plane_state->dst_rect.x;
	pos_cpy.y_hotspot += pipe_ctx->plane_state->dst_rect.y;

	if (pipe_ctx->plane_state->address.type
			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
		pos_cpy.enable = false;

	hubp->funcs->set_cursor_position(hubp, &pos_cpy, &param);
	dpp->funcs->set_cursor_position(dpp, &pos_cpy, &param, hubp->curs_attr.width, hubp->curs_attr.height);
}

static void dcn10_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
{
	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;

	pipe_ctx->plane_res.hubp->funcs->set_cursor_attributes(
			pipe_ctx->plane_res.hubp, attributes);
	pipe_ctx->plane_res.dpp->funcs->set_cursor_attributes(
		pipe_ctx->plane_res.dpp, attributes->color_format);
}

static void dcn10_set_cursor_sdr_white_level(struct pipe_ctx *pipe_ctx)
{
	uint32_t sdr_white_level = pipe_ctx->stream->cursor_attributes.sdr_white_level;
	struct fixed31_32 multiplier;
	struct dpp_cursor_attributes opt_attr = { 0 };
	uint32_t hw_scale = 0x3c00; // 1.0 default multiplier
	struct custom_float_format fmt;

	if (!pipe_ctx->plane_res.dpp->funcs->set_optional_cursor_attributes)
		return;

	fmt.exponenta_bits = 5;
	fmt.mantissa_bits = 10;
	fmt.sign = true;

	if (sdr_white_level > 80) {
		multiplier = dc_fixpt_from_fraction(sdr_white_level, 80);
		convert_to_custom_float_format(multiplier, &fmt, &hw_scale);
	}

	opt_attr.scale = hw_scale;
	opt_attr.bias = 0;

	pipe_ctx->plane_res.dpp->funcs->set_optional_cursor_attributes(
			pipe_ctx->plane_res.dpp, &opt_attr);
}

/**
* apply_front_porch_workaround  TODO FPGA still need?
*
* This is a workaround for a bug that has existed since R5xx and has not been
* fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
*/
static void apply_front_porch_workaround(
	struct dc_crtc_timing *timing)
{
	if (timing->flags.INTERLACE == 1) {
		if (timing->v_front_porch < 2)
			timing->v_front_porch = 2;
	} else {
		if (timing->v_front_porch < 1)
			timing->v_front_porch = 1;
	}
}

int get_vupdate_offset_from_vsync(struct pipe_ctx *pipe_ctx)
{
	struct timing_generator *optc = pipe_ctx->stream_res.tg;
	const struct dc_crtc_timing *dc_crtc_timing = &pipe_ctx->stream->timing;
	struct dc_crtc_timing patched_crtc_timing;
	int vesa_sync_start;
	int asic_blank_end;
	int interlace_factor;
	int vertical_line_start;

	patched_crtc_timing = *dc_crtc_timing;
	apply_front_porch_workaround(&patched_crtc_timing);

	interlace_factor = patched_crtc_timing.flags.INTERLACE ? 2 : 1;

	vesa_sync_start = patched_crtc_timing.v_addressable +
			patched_crtc_timing.v_border_bottom +
			patched_crtc_timing.v_front_porch;

	asic_blank_end = (patched_crtc_timing.v_total -
			vesa_sync_start -
			patched_crtc_timing.v_border_top)
			* interlace_factor;

	vertical_line_start = asic_blank_end -
			optc->dlg_otg_param.vstartup_start + 1;

	return vertical_line_start;
}

static void calc_vupdate_position(
		struct pipe_ctx *pipe_ctx,
		uint32_t *start_line,
		uint32_t *end_line)
{
	const struct dc_crtc_timing *dc_crtc_timing = &pipe_ctx->stream->timing;
	int vline_int_offset_from_vupdate =
			pipe_ctx->stream->periodic_interrupt0.lines_offset;
	int vupdate_offset_from_vsync = get_vupdate_offset_from_vsync(pipe_ctx);
	int start_position;

	if (vline_int_offset_from_vupdate > 0)
		vline_int_offset_from_vupdate--;
	else if (vline_int_offset_from_vupdate < 0)
		vline_int_offset_from_vupdate++;

	start_position = vline_int_offset_from_vupdate + vupdate_offset_from_vsync;

	if (start_position >= 0)
		*start_line = start_position;
	else
		*start_line = dc_crtc_timing->v_total + start_position - 1;

	*end_line = *start_line + 2;

	if (*end_line >= dc_crtc_timing->v_total)
		*end_line = 2;
}

static void cal_vline_position(
		struct pipe_ctx *pipe_ctx,
		enum vline_select vline,
		uint32_t *start_line,
		uint32_t *end_line)
{
	enum vertical_interrupt_ref_point ref_point = INVALID_POINT;

	if (vline == VLINE0)
		ref_point = pipe_ctx->stream->periodic_interrupt0.ref_point;
	else if (vline == VLINE1)
		ref_point = pipe_ctx->stream->periodic_interrupt1.ref_point;

	switch (ref_point) {
	case START_V_UPDATE:
		calc_vupdate_position(
				pipe_ctx,
				start_line,
				end_line);
		break;
	case START_V_SYNC:
		// Suppose to do nothing because vsync is 0;
		break;
	default:
		ASSERT(0);
		break;
	}
}

static void dcn10_setup_periodic_interrupt(
		struct pipe_ctx *pipe_ctx,
		enum vline_select vline)
{
	struct timing_generator *tg = pipe_ctx->stream_res.tg;

	if (vline == VLINE0) {
		uint32_t start_line = 0;
		uint32_t end_line = 0;

		cal_vline_position(pipe_ctx, vline, &start_line, &end_line);

		tg->funcs->setup_vertical_interrupt0(tg, start_line, end_line);

	} else if (vline == VLINE1) {
		pipe_ctx->stream_res.tg->funcs->setup_vertical_interrupt1(
				tg,
				pipe_ctx->stream->periodic_interrupt1.lines_offset);
	}
}

static void dcn10_setup_vupdate_interrupt(struct pipe_ctx *pipe_ctx)
{
	struct timing_generator *tg = pipe_ctx->stream_res.tg;
	int start_line = get_vupdate_offset_from_vsync(pipe_ctx);

	if (start_line < 0) {
		ASSERT(0);
		start_line = 0;
	}

	if (tg->funcs->setup_vertical_interrupt2)
		tg->funcs->setup_vertical_interrupt2(tg, start_line);
}

static const struct hw_sequencer_funcs dcn10_funcs = {
	.program_gamut_remap = program_gamut_remap,
	.init_hw = dcn10_init_hw,
	.init_pipes = dcn10_init_pipes,
	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
	.apply_ctx_for_surface = dcn10_apply_ctx_for_surface,
	.update_plane_addr = dcn10_update_plane_addr,
	.plane_atomic_disconnect = hwss1_plane_atomic_disconnect,
	.update_dchub = dcn10_update_dchub,
	.update_mpcc = dcn10_update_mpcc,
	.update_pending_status = dcn10_update_pending_status,
	.set_input_transfer_func = dcn10_set_input_transfer_func,
	.set_output_transfer_func = dcn10_set_output_transfer_func,
	.program_output_csc = dcn10_program_output_csc,
	.power_down = dce110_power_down,
	.enable_accelerated_mode = dce110_enable_accelerated_mode,
	.enable_timing_synchronization = dcn10_enable_timing_synchronization,
	.enable_per_frame_crtc_position_reset = dcn10_enable_per_frame_crtc_position_reset,
	.update_info_frame = dce110_update_info_frame,
	.enable_stream = dce110_enable_stream,
	.disable_stream = dce110_disable_stream,
	.unblank_stream = dce110_unblank_stream,
	.blank_stream = dce110_blank_stream,
	.enable_audio_stream = dce110_enable_audio_stream,
	.disable_audio_stream = dce110_disable_audio_stream,
	.enable_display_power_gating = dcn10_dummy_display_power_gating,
	.disable_plane = dcn10_disable_plane,
	.blank_pixel_data = dcn10_blank_pixel_data,
	.pipe_control_lock = dcn10_pipe_control_lock,
	.prepare_bandwidth = dcn10_prepare_bandwidth,
	.optimize_bandwidth = dcn10_optimize_bandwidth,
	.reset_hw_ctx_wrap = reset_hw_ctx_wrap,
	.enable_stream_timing = dcn10_enable_stream_timing,
	.set_drr = set_drr,
	.get_position = get_position,
	.set_static_screen_control = set_static_screen_control,
	.setup_stereo = dcn10_setup_stereo,
	.set_avmute = dce110_set_avmute,
	.log_hw_state = dcn10_log_hw_state,
	.get_hw_state = dcn10_get_hw_state,
	.clear_status_bits = dcn10_clear_status_bits,
	.wait_for_mpcc_disconnect = dcn10_wait_for_mpcc_disconnect,
	.edp_backlight_control = hwss_edp_backlight_control,
	.edp_power_control = hwss_edp_power_control,
	.edp_wait_for_hpd_ready = hwss_edp_wait_for_hpd_ready,
	.set_cursor_position = dcn10_set_cursor_position,
	.set_cursor_attribute = dcn10_set_cursor_attribute,
	.set_cursor_sdr_white_level = dcn10_set_cursor_sdr_white_level,
	.disable_stream_gating = NULL,
	.enable_stream_gating = NULL,
	.setup_periodic_interrupt = dcn10_setup_periodic_interrupt,
	.setup_vupdate_interrupt = dcn10_setup_vupdate_interrupt
};


void dcn10_hw_sequencer_construct(struct dc *dc)
{
	dc->hwss = dcn10_funcs;
}