/*
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

/*
	Module: rt61pci
	Abstract: rt61pci device specific routines.
	Supported chipsets: RT2561, RT2561s, RT2661.
 */

#include <linux/crc-itu-t.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00mmio.h"
#include "rt2x00pci.h"
#include "rt61pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
static bool modparam_nohwcrypt = false;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

/*
 * Register access.
 * BBP and RF register require indirect register access,
 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attempt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
#define WAIT_FOR_MCU(__dev, __reg) \
	rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
				H2M_MAILBOX_CSR_OWNER, (__reg))

static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
			      const unsigned int word, const u8 value)
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);

		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

static u8 rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
			   const unsigned int word)
{
	u32 reg;
	u8 value;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
	 */
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);

		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);

		WAIT_FOR_BBP(rt2x00dev, &reg);
	}

	value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);

	mutex_unlock(&rt2x00dev->csr_mutex);

	return value;
}

static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
			     const unsigned int word, const u32 value)
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);

		rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
				const u8 command, const u8 token,
				const u8 arg0, const u8 arg1)
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the MCU becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
		rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);

		reg = rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR);
		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
		rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
	}

	mutex_unlock(&rt2x00dev->csr_mutex);

}

static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt61pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
		.read		= rt2x00mmio_register_read,
		.write		= rt2x00mmio_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
		.word_base	= EEPROM_BASE,
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt61pci_bbp_read,
		.write		= rt61pci_bbp_write,
		.word_base	= BBP_BASE,
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt61pci_rf_write,
		.word_base	= RF_BASE,
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
	return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
}

#ifdef CONFIG_RT2X00_LIB_LEDS
static void rt61pci_brightness_set(struct led_classdev *led_cdev,
				   enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	unsigned int a_mode =
	    (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
	unsigned int bg_mode =
	    (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);

	if (led->type == LED_TYPE_RADIO) {
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_RADIO_STATUS, enabled);

		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
				    (led->rt2x00dev->led_mcu_reg & 0xff),
				    ((led->rt2x00dev->led_mcu_reg >> 8)));
	} else if (led->type == LED_TYPE_ASSOC) {
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_LINK_A_STATUS, a_mode);

		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
				    (led->rt2x00dev->led_mcu_reg & 0xff),
				    ((led->rt2x00dev->led_mcu_reg >> 8)));
	} else if (led->type == LED_TYPE_QUALITY) {
		/*
		 * The brightness is divided into 6 levels (0 - 5),
		 * this means we need to convert the brightness
		 * argument into the matching level within that range.
		 */
		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
				    brightness / (LED_FULL / 6), 0);
	}
}

static int rt61pci_blink_set(struct led_classdev *led_cdev,
			     unsigned long *delay_on,
			     unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	reg = rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14);
	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
	rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);

	return 0;
}

static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
			     struct rt2x00_led *led,
			     enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt61pci_brightness_set;
	led->led_dev.blink_set = rt61pci_blink_set;
	led->flags = LED_INITIALIZED;
}
#endif /* CONFIG_RT2X00_LIB_LEDS */

/*
 * Configuration handlers.
 */
static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
				     struct rt2x00lib_crypto *crypto,
				     struct ieee80211_key_conf *key)
{
	struct hw_key_entry key_entry;
	struct rt2x00_field32 field;
	u32 mask;
	u32 reg;

	if (crypto->cmd == SET_KEY) {
		/*
		 * rt2x00lib can't determine the correct free
		 * key_idx for shared keys. We have 1 register
		 * with key valid bits. The goal is simple, read
		 * the register, if that is full we have no slots
		 * left.
		 * Note that each BSS is allowed to have up to 4
		 * shared keys, so put a mask over the allowed
		 * entries.
		 */
		mask = (0xf << crypto->bssidx);

		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR0);
		reg &= mask;

		if (reg && reg == mask)
			return -ENOSPC;

		key->hw_key_idx += reg ? ffz(reg) : 0;

		/*
		 * Upload key to hardware
		 */
		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
					       &key_entry, sizeof(key_entry));

		/*
		 * The cipher types are stored over 2 registers.
		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
		 * Using the correct defines correctly will cause overhead,
		 * so just calculate the correct offset.
		 */
		if (key->hw_key_idx < 8) {
			field.bit_offset = (3 * key->hw_key_idx);
			field.bit_mask = 0x7 << field.bit_offset;

			reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR1);
			rt2x00_set_field32(&reg, field, crypto->cipher);
			rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
		} else {
			field.bit_offset = (3 * (key->hw_key_idx - 8));
			field.bit_mask = 0x7 << field.bit_offset;

			reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR5);
			rt2x00_set_field32(&reg, field, crypto->cipher);
			rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
		}

		/*
		 * The driver does not support the IV/EIV generation
		 * in hardware. However it doesn't support the IV/EIV
		 * inside the ieee80211 frame either, but requires it
		 * to be provided separately for the descriptor.
		 * rt2x00lib will cut the IV/EIV data out of all frames
		 * given to us by mac80211, but we must tell mac80211
		 * to generate the IV/EIV data.
		 */
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
	}

	/*
	 * SEC_CSR0 contains only single-bit fields to indicate
	 * a particular key is valid. Because using the FIELD32()
	 * defines directly will cause a lot of overhead, we use
	 * a calculation to determine the correct bit directly.
	 */
	mask = 1 << key->hw_key_idx;

	reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR0);
	if (crypto->cmd == SET_KEY)
		reg |= mask;
	else if (crypto->cmd == DISABLE_KEY)
		reg &= ~mask;
	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);

	return 0;
}

static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
				       struct rt2x00lib_crypto *crypto,
				       struct ieee80211_key_conf *key)
{
	struct hw_pairwise_ta_entry addr_entry;
	struct hw_key_entry key_entry;
	u32 mask;
	u32 reg;

	if (crypto->cmd == SET_KEY) {
		/*
		 * rt2x00lib can't determine the correct free
		 * key_idx for pairwise keys. We have 2 registers
		 * with key valid bits. The goal is simple: read
		 * the first register. If that is full, move to
		 * the next register.
		 * When both registers are full, we drop the key.
		 * Otherwise, we use the first invalid entry.
		 */
		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
		if (reg && reg == ~0) {
			key->hw_key_idx = 32;
			reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
			if (reg && reg == ~0)
				return -ENOSPC;
		}

		key->hw_key_idx += reg ? ffz(reg) : 0;

		/*
		 * Upload key to hardware
		 */
		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		memset(&addr_entry, 0, sizeof(addr_entry));
		memcpy(&addr_entry, crypto->address, ETH_ALEN);
		addr_entry.cipher = crypto->cipher;

		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
					       &key_entry, sizeof(key_entry));

		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
					       &addr_entry, sizeof(addr_entry));

		/*
		 * Enable pairwise lookup table for given BSS idx.
		 * Without this, received frames will not be decrypted
		 * by the hardware.
		 */
		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR4);
		reg |= (1 << crypto->bssidx);
		rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);

		/*
		 * The driver does not support the IV/EIV generation
		 * in hardware. However it doesn't support the IV/EIV
		 * inside the ieee80211 frame either, but requires it
		 * to be provided separately for the descriptor.
		 * rt2x00lib will cut the IV/EIV data out of all frames
		 * given to us by mac80211, but we must tell mac80211
		 * to generate the IV/EIV data.
		 */
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
	}

	/*
	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
	 * a particular key is valid. Because using the FIELD32()
	 * defines directly will cause a lot of overhead, we use
	 * a calculation to determine the correct bit directly.
	 */
	if (key->hw_key_idx < 32) {
		mask = 1 << key->hw_key_idx;

		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
		if (crypto->cmd == SET_KEY)
			reg |= mask;
		else if (crypto->cmd == DISABLE_KEY)
			reg &= ~mask;
		rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
	} else {
		mask = 1 << (key->hw_key_idx - 32);

		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
		if (crypto->cmd == SET_KEY)
			reg |= mask;
		else if (crypto->cmd == DISABLE_KEY)
			reg &= ~mask;
		rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
	}

	return 0;
}

static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
				  const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
			   !rt2x00dev->intf_ap_count);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
			   !(filter_flags & FIF_CONTROL));
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
}

static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
				struct rt2x00_intf *intf,
				struct rt2x00intf_conf *conf,
				const unsigned int flags)
{
	u32 reg;

	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable synchronisation.
		 */
		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
	}

	if (flags & CONFIG_UPDATE_MAC) {
		reg = le32_to_cpu(conf->mac[1]);
		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
		conf->mac[1] = cpu_to_le32(reg);

		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
					       conf->mac, sizeof(conf->mac));
	}

	if (flags & CONFIG_UPDATE_BSSID) {
		reg = le32_to_cpu(conf->bssid[1]);
		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
		conf->bssid[1] = cpu_to_le32(reg);

		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
					       conf->bssid,
					       sizeof(conf->bssid));
	}
}

static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00lib_erp *erp,
			       u32 changed)
{
	u32 reg;

	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);

	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
				   !!erp->short_preamble);
		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
	}

	if (changed & BSS_CHANGED_BASIC_RATES)
		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
					  erp->basic_rates);

	if (changed & BSS_CHANGED_BEACON_INT) {
		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
				   erp->beacon_int * 16);
		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
	}

	if (changed & BSS_CHANGED_ERP_SLOT) {
		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
		rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);

		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR8);
		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
		rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
	}
}

static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
				      struct antenna_setup *ant)
{
	u8 r3;
	u8 r4;
	u8 r77;

	r3 = rt61pci_bbp_read(rt2x00dev, 3);
	r4 = rt61pci_bbp_read(rt2x00dev, 4);
	r77 = rt61pci_bbp_read(rt2x00dev, 77);

	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
				  (rt2x00dev->curr_band != NL80211_BAND_5GHZ));
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
		if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		else
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
		if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		else
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
				      struct antenna_setup *ant)
{
	u8 r3;
	u8 r4;
	u8 r77;

	r3 = rt61pci_bbp_read(rt2x00dev, 3);
	r4 = rt61pci_bbp_read(rt2x00dev, 4);
	r77 = rt61pci_bbp_read(rt2x00dev, 77);

	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
			  !rt2x00_has_cap_frame_type(rt2x00dev));

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
					   const int p1, const int p2)
{
	u32 reg;

	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);

	rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
	rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);

	rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
	rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);

	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
}

static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
					struct antenna_setup *ant)
{
	u8 r3;
	u8 r4;
	u8 r77;

	r3 = rt61pci_bbp_read(rt2x00dev, 3);
	r4 = rt61pci_bbp_read(rt2x00dev, 4);
	r77 = rt61pci_bbp_read(rt2x00dev, 77);

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_A:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
		break;
	case ANTENNA_HW_DIVERSITY:
		/*
		 * FIXME: Antenna selection for the rf 2529 is very confusing
		 * in the legacy driver. Just default to antenna B until the
		 * legacy code can be properly translated into rt2x00 code.
		 */
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

struct antenna_sel {
	u8 word;
	/*
	 * value[0] -> non-LNA
	 * value[1] -> LNA
	 */
	u8 value[2];
};

static const struct antenna_sel antenna_sel_a[] = {
	{ 96,  { 0x58, 0x78 } },
	{ 104, { 0x38, 0x48 } },
	{ 75,  { 0xfe, 0x80 } },
	{ 86,  { 0xfe, 0x80 } },
	{ 88,  { 0xfe, 0x80 } },
	{ 35,  { 0x60, 0x60 } },
	{ 97,  { 0x58, 0x58 } },
	{ 98,  { 0x58, 0x58 } },
};

static const struct antenna_sel antenna_sel_bg[] = {
	{ 96,  { 0x48, 0x68 } },
	{ 104, { 0x2c, 0x3c } },
	{ 75,  { 0xfe, 0x80 } },
	{ 86,  { 0xfe, 0x80 } },
	{ 88,  { 0xfe, 0x80 } },
	{ 35,  { 0x50, 0x50 } },
	{ 97,  { 0x48, 0x48 } },
	{ 98,  { 0x48, 0x48 } },
};

static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
			       struct antenna_setup *ant)
{
	const struct antenna_sel *sel;
	unsigned int lna;
	unsigned int i;
	u32 reg;

	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
		sel = antenna_sel_a;
		lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
	} else {
		sel = antenna_sel_bg;
		lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
	}

	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);

	reg = rt2x00mmio_register_read(rt2x00dev, PHY_CSR0);

	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
			   rt2x00dev->curr_band == NL80211_BAND_2GHZ);
	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
			   rt2x00dev->curr_band == NL80211_BAND_5GHZ);

	rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);

	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
		rt61pci_config_antenna_5x(rt2x00dev, ant);
	else if (rt2x00_rf(rt2x00dev, RF2527))
		rt61pci_config_antenna_2x(rt2x00dev, ant);
	else if (rt2x00_rf(rt2x00dev, RF2529)) {
		if (rt2x00_has_cap_double_antenna(rt2x00dev))
			rt61pci_config_antenna_2x(rt2x00dev, ant);
		else
			rt61pci_config_antenna_2529(rt2x00dev, ant);
	}
}

static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
				    struct rt2x00lib_conf *libconf)
{
	u16 eeprom;
	short lna_gain = 0;

	if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
			lna_gain += 14;

		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
	} else {
		if (rt2x00_has_cap_external_lna_a(rt2x00dev))
			lna_gain += 14;

		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
	}

	rt2x00dev->lna_gain = lna_gain;
}

static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
				   struct rf_channel *rf, const int txpower)
{
	u8 r3;
	u8 r94;
	u8 smart;

	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);

	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));

	r3 = rt61pci_bbp_read(rt2x00dev, 3);
	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
	rt61pci_bbp_write(rt2x00dev, 3, r3);

	r94 = 6;
	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
		r94 += txpower - MAX_TXPOWER;
	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
		r94 += txpower;
	rt61pci_bbp_write(rt2x00dev, 94, r94);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	msleep(1);
}

static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
				   const int txpower)
{
	struct rf_channel rf;

	rf.rf1 = rt2x00_rf_read(rt2x00dev, 1);
	rf.rf2 = rt2x00_rf_read(rt2x00dev, 2);
	rf.rf3 = rt2x00_rf_read(rt2x00dev, 3);
	rf.rf4 = rt2x00_rf_read(rt2x00dev, 4);

	rt61pci_config_channel(rt2x00dev, &rf, txpower);
}

static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
				    struct rt2x00lib_conf *libconf)
{
	u32 reg;

	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
}

static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
				   rt2x00dev->beacon_int - 10);
		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);
		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
					  0x00000005);
		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);

		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
	} else {
		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
					  0x00000007);
		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);

		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
	}
}

static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
			   struct rt2x00lib_conf *libconf,
			   const unsigned int flags)
{
	/* Always recalculate LNA gain before changing configuration */
	rt61pci_config_lna_gain(rt2x00dev, libconf);

	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
		rt61pci_config_channel(rt2x00dev, &libconf->rf,
				       libconf->conf->power_level);
	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt61pci_config_retry_limit(rt2x00dev, libconf);
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt61pci_config_ps(rt2x00dev, libconf);
}

/*
 * Link tuning
 */
static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
			       struct link_qual *qual)
{
	u32 reg;

	/*
	 * Update FCS error count from register.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);

	/*
	 * Update False CCA count from register.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
}

static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
				   struct link_qual *qual, u8 vgc_level)
{
	if (qual->vgc_level != vgc_level) {
		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
		qual->vgc_level = vgc_level;
		qual->vgc_level_reg = vgc_level;
	}
}

static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
				struct link_qual *qual)
{
	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
}

static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
			       struct link_qual *qual, const u32 count)
{
	u8 up_bound;
	u8 low_bound;

	/*
	 * Determine r17 bounds.
	 */
	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
		low_bound = 0x28;
		up_bound = 0x48;
		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
			low_bound += 0x10;
			up_bound += 0x10;
		}
	} else {
		low_bound = 0x20;
		up_bound = 0x40;
		if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
			low_bound += 0x10;
			up_bound += 0x10;
		}
	}

	/*
	 * If we are not associated, we should go straight to the
	 * dynamic CCA tuning.
	 */
	if (!rt2x00dev->intf_associated)
		goto dynamic_cca_tune;

	/*
	 * Special big-R17 for very short distance
	 */
	if (qual->rssi >= -35) {
		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
		return;
	}

	/*
	 * Special big-R17 for short distance
	 */
	if (qual->rssi >= -58) {
		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
		return;
	}

	/*
	 * Special big-R17 for middle-short distance
	 */
	if (qual->rssi >= -66) {
		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
		return;
	}

	/*
	 * Special mid-R17 for middle distance
	 */
	if (qual->rssi >= -74) {
		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
		return;
	}

	/*
	 * Special case: Change up_bound based on the rssi.
	 * Lower up_bound when rssi is weaker then -74 dBm.
	 */
	up_bound -= 2 * (-74 - qual->rssi);
	if (low_bound > up_bound)
		up_bound = low_bound;

	if (qual->vgc_level > up_bound) {
		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
		return;
	}

dynamic_cca_tune:

	/*
	 * r17 does not yet exceed upper limit, continue and base
	 * the r17 tuning on the false CCA count.
	 */
	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
}

/*
 * Queue handlers.
 */
static void rt61pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
		break;
	case QID_BEACON:
		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
		break;
	default:
		break;
	}
}

static void rt61pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_AC_VO:
		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
	case QID_AC_VI:
		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
	case QID_AC_BE:
		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
	case QID_AC_BK:
		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
	default:
		break;
	}
}

static void rt61pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_AC_VO:
		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
	case QID_AC_VI:
		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
	case QID_AC_BE:
		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
	case QID_AC_BK:
		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
		break;
	case QID_RX:
		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
		break;
	case QID_BEACON:
		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);

		/*
		 * Wait for possibly running tbtt tasklets.
		 */
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		break;
	default:
		break;
	}
}

/*
 * Firmware functions
 */
static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	u16 chip;
	char *fw_name;

	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
	switch (chip) {
	case RT2561_PCI_ID:
		fw_name = FIRMWARE_RT2561;
		break;
	case RT2561s_PCI_ID:
		fw_name = FIRMWARE_RT2561s;
		break;
	case RT2661_PCI_ID:
		fw_name = FIRMWARE_RT2661;
		break;
	default:
		fw_name = NULL;
		break;
	}

	return fw_name;
}

static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
				  const u8 *data, const size_t len)
{
	u16 fw_crc;
	u16 crc;

	/*
	 * Only support 8kb firmware files.
	 */
	if (len != 8192)
		return FW_BAD_LENGTH;

	/*
	 * The last 2 bytes in the firmware array are the crc checksum itself.
	 * This means that we should never pass those 2 bytes to the crc
	 * algorithm.
	 */
	fw_crc = (data[len - 2] << 8 | data[len - 1]);

	/*
	 * Use the crc itu-t algorithm.
	 */
	crc = crc_itu_t(0, data, len - 2);
	crc = crc_itu_t_byte(crc, 0);
	crc = crc_itu_t_byte(crc, 0);

	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
}

static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
				 const u8 *data, const size_t len)
{
	int i;
	u32 reg;

	/*
	 * Wait for stable hardware.
	 */
	for (i = 0; i < 100; i++) {
		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
		if (reg)
			break;
		msleep(1);
	}

	if (!reg) {
		rt2x00_err(rt2x00dev, "Unstable hardware\n");
		return -EBUSY;
	}

	/*
	 * Prepare MCU and mailbox for firmware loading.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
	rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);

	/*
	 * Write firmware to device.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				       data, len);

	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	for (i = 0; i < 100; i++) {
		reg = rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR);
		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
			break;
		msleep(1);
	}

	if (i == 100) {
		rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
		return -EBUSY;
	}

	/*
	 * Hardware needs another millisecond before it is ready.
	 */
	msleep(1);

	/*
	 * Reset MAC and BBP registers.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt61pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		word = rt2x00_desc_read(entry_priv->desc, 0);

		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
	} else {
		word = rt2x00_desc_read(entry_priv->desc, 0);

		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		        rt2x00_get_field32(word, TXD_W0_VALID));
	}
}

static void rt61pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	u32 word;

	if (entry->queue->qid == QID_RX) {
		word = rt2x00_desc_read(entry_priv->desc, 5);
		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
				   skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 5, word);

		word = rt2x00_desc_read(entry_priv->desc, 0);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	} else {
		word = rt2x00_desc_read(entry_priv->desc, 0);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	}
}

static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_mmio *entry_priv;
	u32 reg;

	/*
	 * Initialize registers.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0);
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
			   rt2x00dev->tx[0].limit);
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
			   rt2x00dev->tx[1].limit);
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
			   rt2x00dev->tx[2].limit);
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
			   rt2x00dev->tx[3].limit);
	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1);
	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
			   rt2x00dev->tx[0].desc_size / 4);
	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);

	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
	reg = rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR);
	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
			   entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
	reg = rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR);
	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
			   entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
	reg = rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR);
	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
			   entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
	reg = rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR);
	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
			   entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR);
	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
			   rt2x00dev->rx->desc_size / 4);
	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
	rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
	reg = rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR);
	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
			   entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
	rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
	rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);

	return 0;
}

static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);

	/*
	 * CCK TXD BBP registers
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);

	/*
	 * OFDM TXD BBP registers
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);

	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);

	rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);

	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
	rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);

	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);

	/*
	 * Invalidate all Shared Keys (SEC_CSR0),
	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
	 */
	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
	rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
	rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);

	rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
	rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
	rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
	rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);

	rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);

	rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);

	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);

	/*
	 * Clear all beacons
	 * For the Beacon base registers we only need to clear
	 * the first byte since that byte contains the VALID and OWNER
	 * bits which (when set to 0) will invalidate the entire beacon.
	 */
	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);

	/*
	 * We must clear the error counters.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR2);

	/*
	 * Reset MAC and BBP registers.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);

	return 0;
}

static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		value = rt61pci_bbp_read(rt2x00dev, 0);
		if ((value != 0xff) && (value != 0x00))
			return 0;
		udelay(REGISTER_BUSY_DELAY);
	}

	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
	return -EACCES;
}

static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;

	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
	rt61pci_bbp_write(rt2x00dev, 107, 0x04);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt61pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_OFF);
	u32 reg;
	unsigned long flags;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

		reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
		rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);

	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);

	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
		 * Ensure that all tasklets are finished.
		 */
		tasklet_kill(&rt2x00dev->txstatus_tasklet);
		tasklet_kill(&rt2x00dev->rxdone_tasklet);
		tasklet_kill(&rt2x00dev->autowake_tasklet);
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
	}
}

static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Initialize all registers.
	 */
	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
		     rt61pci_init_registers(rt2x00dev) ||
		     rt61pci_init_bbp(rt2x00dev)))
		return -EIO;

	/*
	 * Enable RX.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);

	return 0;
}

static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Disable power
	 */
	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
}

static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
	u32 reg, reg2;
	unsigned int i;
	char put_to_sleep;

	put_to_sleep = (state != STATE_AWAKE);

	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
	rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		reg2 = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
		if (state == !put_to_sleep)
			return 0;
		rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
		msleep(10);
	}

	return -EBUSY;
}

static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				    enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt61pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt61pci_disable_radio(rt2x00dev);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt61pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt61pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
			   state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
static void rt61pci_write_tx_desc(struct queue_entry *entry,
				  struct txentry_desc *txdesc)
{
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
	__le32 *txd = entry_priv->desc;
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
	word = rt2x00_desc_read(txd, 1);
	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
	rt2x00_desc_write(txd, 1, word);

	word = rt2x00_desc_read(txd, 2);
	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
			   txdesc->u.plcp.length_low);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
			   txdesc->u.plcp.length_high);
	rt2x00_desc_write(txd, 2, word);

	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
	}

	word = rt2x00_desc_read(txd, 5);
	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
	rt2x00_desc_write(txd, 5, word);

	if (entry->queue->qid != QID_BEACON) {
		word = rt2x00_desc_read(txd, 6);
		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
				   skbdesc->skb_dma);
		rt2x00_desc_write(txd, 6, word);

		word = rt2x00_desc_read(txd, 11);
		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
				   txdesc->length);
		rt2x00_desc_write(txd, 11, word);
	}

	/*
	 * Writing TXD word 0 must the last to prevent a race condition with
	 * the device, whereby the device may take hold of the TXD before we
	 * finished updating it.
	 */
	word = rt2x00_desc_read(txd, 0);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_ACK,
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_OFDM,
			   (txdesc->rate_mode == RATE_MODE_OFDM));
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
	rt2x00_set_field32(&word, TXD_W0_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
	rt2x00_desc_write(txd, 0, word);

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
			    TXD_DESC_SIZE;
}

/*
 * TX data initialization
 */
static void rt61pci_write_beacon(struct queue_entry *entry,
				 struct txentry_desc *txdesc)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
	unsigned int beacon_base;
	unsigned int padding_len;
	u32 orig_reg, reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
	orig_reg = reg;
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);

	/*
	 * Write the TX descriptor for the beacon.
	 */
	rt61pci_write_tx_desc(entry, txdesc);

	/*
	 * Dump beacon to userspace through debugfs.
	 */
	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);

	/*
	 * Write entire beacon with descriptor and padding to register.
	 */
	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
	if (padding_len && skb_pad(entry->skb, padding_len)) {
		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
		/* skb freed by skb_pad() on failure */
		entry->skb = NULL;
		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
		return;
	}

	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
				       entry_priv->desc, TXINFO_SIZE);
	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
				       entry->skb->data,
				       entry->skb->len + padding_len);

	/*
	 * Enable beaconing again.
	 *
	 * For Wi-Fi faily generated beacons between participating
	 * stations. Set TBTT phase adaptive adjustment step to 8us.
	 */
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);

	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);

	/*
	 * Clean up beacon skb.
	 */
	dev_kfree_skb_any(entry->skb);
	entry->skb = NULL;
}

static void rt61pci_clear_beacon(struct queue_entry *entry)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	u32 orig_reg, reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	orig_reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
	reg = orig_reg;
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);

	/*
	 * Clear beacon.
	 */
	rt2x00mmio_register_write(rt2x00dev,
				  HW_BEACON_OFFSET(entry->entry_idx), 0);

	/*
	 * Restore global beaconing state.
	 */
	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
}

/*
 * RX control handlers
 */
static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
{
	u8 offset = rt2x00dev->lna_gain;
	u8 lna;

	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
	switch (lna) {
	case 3:
		offset += 90;
		break;
	case 2:
		offset += 74;
		break;
	case 1:
		offset += 64;
		break;
	default:
		return 0;
	}

	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
		if (lna == 3 || lna == 2)
			offset += 10;
	}

	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
}

static void rt61pci_fill_rxdone(struct queue_entry *entry,
				struct rxdone_entry_desc *rxdesc)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
	u32 word0;
	u32 word1;

	word0 = rt2x00_desc_read(entry_priv->desc, 0);
	word1 = rt2x00_desc_read(entry_priv->desc, 1);

	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);

	if (rxdesc->cipher != CIPHER_NONE) {
		rxdesc->iv[0] = _rt2x00_desc_read(entry_priv->desc, 2);
		rxdesc->iv[1] = _rt2x00_desc_read(entry_priv->desc, 3);
		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;

		rxdesc->icv = _rt2x00_desc_read(entry_priv->desc, 4);
		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;

		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. It has provided the data separately but rt2x00lib
		 * should decide if it should be reinserted.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

		/*
		 * The hardware has already checked the Michael Mic and has
		 * stripped it from the frame. Signal this to mac80211.
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

	/*
	 * Obtain the status about this packet.
	 * When frame was received with an OFDM bitrate,
	 * the signal is the PLCP value. If it was received with
	 * a CCK bitrate the signal is the rate in 100kbit/s.
	 */
	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);

	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
	else
		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
}

/*
 * Interrupt functions.
 */
static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	struct queue_entry *entry;
	struct queue_entry *entry_done;
	struct queue_entry_priv_mmio *entry_priv;
	struct txdone_entry_desc txdesc;
	u32 word;
	u32 reg;
	int type;
	int index;
	int i;

	/*
	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
	 * flag is not set anymore.
	 *
	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
	 * tx ring size for now.
	 */
	for (i = 0; i < rt2x00dev->tx->limit; i++) {
		reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR4);
		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
			break;

		/*
		 * Skip this entry when it contains an invalid
		 * queue identication number.
		 */
		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
		queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
		if (unlikely(!queue))
			continue;

		/*
		 * Skip this entry when it contains an invalid
		 * index number.
		 */
		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
		if (unlikely(index >= queue->limit))
			continue;

		entry = &queue->entries[index];
		entry_priv = entry->priv_data;
		word = rt2x00_desc_read(entry_priv->desc, 0);

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			return;

		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
		while (entry != entry_done) {
			/* Catch up.
			 * Just report any entries we missed as failed.
			 */
			rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
				    entry_done->entry_idx);

			rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
		}

		/*
		 * Obtain the status about this packet.
		 */
		txdesc.flags = 0;
		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
		case 0: /* Success, maybe with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 6: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Fall through - this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);

		/*
		 * the frame was retried at least once
		 * -> hw used fallback rates
		 */
		if (txdesc.retry)
			__set_bit(TXDONE_FALLBACK, &txdesc.flags);

		rt2x00lib_txdone(entry, &txdesc);
	}
}

static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };

	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
					    struct rt2x00_field32 irq_field)
{
	u32 reg;

	/*
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
	 */
	spin_lock_irq(&rt2x00dev->irqmask_lock);

	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
	rt2x00_set_field32(&reg, irq_field, 0);
	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);

	spin_unlock_irq(&rt2x00dev->irqmask_lock);
}

static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
					 struct rt2x00_field32 irq_field)
{
	u32 reg;

	/*
	 * Enable a single MCU interrupt. The interrupt mask register
	 * access needs locking.
	 */
	spin_lock_irq(&rt2x00dev->irqmask_lock);

	reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
	rt2x00_set_field32(&reg, irq_field, 0);
	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);

	spin_unlock_irq(&rt2x00dev->irqmask_lock);
}

static void rt61pci_txstatus_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt61pci_txdone(rt2x00dev);
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
}

static void rt61pci_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_beacondone(rt2x00dev);
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
}

static void rt61pci_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	if (rt2x00mmio_rxdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
}

static void rt61pci_autowake_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt61pci_wakeup(rt2x00dev);
	rt2x00mmio_register_write(rt2x00dev,
				  M2H_CMD_DONE_CSR, 0xffffffff);
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
}

static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg_mcu, mask_mcu;
	u32 reg, mask;

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	reg_mcu = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
	rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);

	reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

	if (!reg && !reg_mcu)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

	/*
	 * Schedule tasklets for interrupt handling.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);

	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);

	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);

	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
		tasklet_schedule(&rt2x00dev->autowake_tasklet);

	/*
	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
	 * for interrupts and interrupt masks we can just use the value of
	 * INT_SOURCE_CSR to create the interrupt mask.
	 */
	mask = reg;
	mask_mcu = reg_mcu;

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
	spin_lock(&rt2x00dev->irqmask_lock);

	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
	reg |= mask;
	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
	reg |= mask_mcu;
	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);

	spin_unlock(&rt2x00dev->irqmask_lock);

	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;
	s8 value;

	reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt61pci_eepromregister_read;
	eeprom.register_write = rt61pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	rt2x00lib_set_mac_address(rt2x00dev, mac);

	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
				   ANTENNA_B);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
				   ANTENNA_B);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
	}

	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
	}

	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
				   LED_MODE_DEFAULT);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
		rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
	}

	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
		rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
	}

	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
	} else {
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
	}

	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
	} else {
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
	}

	return 0;
}

static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));

	if (!rt2x00_rf(rt2x00dev, RF5225) &&
	    !rt2x00_rf(rt2x00dev, RF5325) &&
	    !rt2x00_rf(rt2x00dev, RF2527) &&
	    !rt2x00_rf(rt2x00dev, RF2529)) {
		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
		return -ENODEV;
	}

	/*
	 * Determine number of antennas.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
		__set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);

	/*
	 * Identify default antenna configuration.
	 */
	rt2x00dev->default_ant.tx =
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
	rt2x00dev->default_ant.rx =
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

	/*
	 * Read the Frame type.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);

	/*
	 * Detect if this device has a hardware controlled radio.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);

	/*
	 * Read frequency offset and RF programming sequence.
	 */
	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
		__set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);

	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);

	/*
	 * Read external LNA informations.
	 */
	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);

	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);

	/*
	 * When working with a RF2529 chip without double antenna,
	 * the antenna settings should be gathered from the NIC
	 * eeprom word.
	 */
	if (rt2x00_rf(rt2x00dev, RF2529) &&
	    !rt2x00_has_cap_double_antenna(rt2x00dev)) {
		rt2x00dev->default_ant.rx =
		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
		rt2x00dev->default_ant.tx =
		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);

		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
	}

	/*
	 * Store led settings, for correct led behaviour.
	 * If the eeprom value is invalid,
	 * switch to default led mode.
	 */
#ifdef CONFIG_RT2X00_LIB_LEDS
	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);

	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
	if (value == LED_MODE_SIGNAL_STRENGTH)
		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				 LED_TYPE_QUALITY);

	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_0));
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_1));
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_2));
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_3));
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_4));
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_RDY_G));
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_RDY_A));
#endif /* CONFIG_RT2X00_LIB_LEDS */

	return 0;
}

/*
 * RF value list for RF5225 & RF5325
 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
 */
static const struct rf_channel rf_vals_noseq[] = {
	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },

	/* 802.11 UNII */
	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },

	/* MMAC(Japan)J52 ch 34,38,42,46 */
	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
};

/*
 * RF value list for RF5225 & RF5325
 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
 */
static const struct rf_channel rf_vals_seq[] = {
	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },

	/* 802.11 UNII */
	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },

	/* MMAC(Japan)J52 ch 34,38,42,46 */
	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
};

static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
	struct channel_info *info;
	char *tx_power;
	unsigned int i;

	/*
	 * Disable powersaving as default.
	 */
	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;

	/*
	 * Initialize all hw fields.
	 */
	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);

	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * As rt61 has a global fallback table we cannot specify
	 * more then one tx rate per frame but since the hw will
	 * try several rates (based on the fallback table) we should
	 * initialize max_report_rates to the maximum number of rates
	 * we are going to try. Otherwise mac80211 will truncate our
	 * reported tx rates and the rc algortihm will end up with
	 * incorrect data.
	 */
	rt2x00dev->hw->max_rates = 1;
	rt2x00dev->hw->max_report_rates = 7;
	rt2x00dev->hw->max_rate_tries = 1;

	/*
	 * Initialize hw_mode information.
	 */
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;

	if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
		spec->num_channels = 14;
		spec->channels = rf_vals_noseq;
	} else {
		spec->num_channels = 14;
		spec->channels = rf_vals_seq;
	}

	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
	}

	/*
	 * Create channel information array
	 */
	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;

	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
	for (i = 0; i < 14; i++) {
		info[i].max_power = MAX_TXPOWER;
		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
	}

	if (spec->num_channels > 14) {
		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
		for (i = 14; i < spec->num_channels; i++) {
			info[i].max_power = MAX_TXPOWER;
			info[i].default_power1 =
					TXPOWER_FROM_DEV(tx_power[i - 14]);
		}
	}

	return 0;
}

static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;
	u32 reg;

	/*
	 * Disable power saving.
	 */
	rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);

	/*
	 * Allocate eeprom data.
	 */
	retval = rt61pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt61pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Enable rfkill polling by setting GPIO direction of the
	 * rfkill switch GPIO pin correctly.
	 */
	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
	rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);

	/*
	 * Initialize hw specifications.
	 */
	retval = rt61pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames,
	 * but has no a separate filter for PS Poll frames.
	 */
	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);

	/*
	 * This device requires firmware and DMA mapped skbs.
	 */
	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
	if (!modparam_nohwcrypt)
		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
static int rt61pci_conf_tx(struct ieee80211_hw *hw,
			   struct ieee80211_vif *vif, u16 queue_idx,
			   const struct ieee80211_tx_queue_params *params)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	struct data_queue *queue;
	struct rt2x00_field32 field;
	int retval;
	u32 reg;
	u32 offset;

	/*
	 * First pass the configuration through rt2x00lib, that will
	 * update the queue settings and validate the input. After that
	 * we are free to update the registers based on the value
	 * in the queue parameter.
	 */
	retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
	if (retval)
		return retval;

	/*
	 * We only need to perform additional register initialization
	 * for WMM queues.
	 */
	if (queue_idx >= 4)
		return 0;

	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);

	/* Update WMM TXOP register */
	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
	field.bit_offset = (queue_idx & 1) * 16;
	field.bit_mask = 0xffff << field.bit_offset;

	reg = rt2x00mmio_register_read(rt2x00dev, offset);
	rt2x00_set_field32(&reg, field, queue->txop);
	rt2x00mmio_register_write(rt2x00dev, offset, reg);

	/* Update WMM registers */
	field.bit_offset = queue_idx * 4;
	field.bit_mask = 0xf << field.bit_offset;

	reg = rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR);
	rt2x00_set_field32(&reg, field, queue->aifs);
	rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR);
	rt2x00_set_field32(&reg, field, queue->cw_min);
	rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);

	reg = rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR);
	rt2x00_set_field32(&reg, field, queue->cw_max);
	rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);

	return 0;
}

static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13);
	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12);
	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);

	return tsf;
}

static const struct ieee80211_ops rt61pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt61pci_conf_tx,
	.get_tsf		= rt61pci_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.flush			= rt2x00mac_flush,
	.set_antenna		= rt2x00mac_set_antenna,
	.get_antenna		= rt2x00mac_get_antenna,
	.get_ringparam		= rt2x00mac_get_ringparam,
	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
};

static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
	.irq_handler		= rt61pci_interrupt,
	.txstatus_tasklet	= rt61pci_txstatus_tasklet,
	.tbtt_tasklet		= rt61pci_tbtt_tasklet,
	.rxdone_tasklet		= rt61pci_rxdone_tasklet,
	.autowake_tasklet	= rt61pci_autowake_tasklet,
	.probe_hw		= rt61pci_probe_hw,
	.get_firmware_name	= rt61pci_get_firmware_name,
	.check_firmware		= rt61pci_check_firmware,
	.load_firmware		= rt61pci_load_firmware,
	.initialize		= rt2x00mmio_initialize,
	.uninitialize		= rt2x00mmio_uninitialize,
	.get_entry_state	= rt61pci_get_entry_state,
	.clear_entry		= rt61pci_clear_entry,
	.set_device_state	= rt61pci_set_device_state,
	.rfkill_poll		= rt61pci_rfkill_poll,
	.link_stats		= rt61pci_link_stats,
	.reset_tuner		= rt61pci_reset_tuner,
	.link_tuner		= rt61pci_link_tuner,
	.start_queue		= rt61pci_start_queue,
	.kick_queue		= rt61pci_kick_queue,
	.stop_queue		= rt61pci_stop_queue,
	.flush_queue		= rt2x00mmio_flush_queue,
	.write_tx_desc		= rt61pci_write_tx_desc,
	.write_beacon		= rt61pci_write_beacon,
	.clear_beacon		= rt61pci_clear_beacon,
	.fill_rxdone		= rt61pci_fill_rxdone,
	.config_shared_key	= rt61pci_config_shared_key,
	.config_pairwise_key	= rt61pci_config_pairwise_key,
	.config_filter		= rt61pci_config_filter,
	.config_intf		= rt61pci_config_intf,
	.config_erp		= rt61pci_config_erp,
	.config_ant		= rt61pci_config_ant,
	.config			= rt61pci_config,
};

static void rt61pci_queue_init(struct data_queue *queue)
{
	switch (queue->qid) {
	case QID_RX:
		queue->limit = 32;
		queue->data_size = DATA_FRAME_SIZE;
		queue->desc_size = RXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;

	case QID_AC_VO:
	case QID_AC_VI:
	case QID_AC_BE:
	case QID_AC_BK:
		queue->limit = 32;
		queue->data_size = DATA_FRAME_SIZE;
		queue->desc_size = TXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;

	case QID_BEACON:
		queue->limit = 4;
		queue->data_size = 0; /* No DMA required for beacons */
		queue->desc_size = TXINFO_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;

	case QID_ATIM:
		/* fallthrough */
	default:
		BUG();
		break;
	}
}

static const struct rt2x00_ops rt61pci_ops = {
	.name			= KBUILD_MODNAME,
	.max_ap_intf		= 4,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
	.queue_init		= rt61pci_queue_init,
	.lib			= &rt61pci_rt2x00_ops,
	.hw			= &rt61pci_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
	.debugfs		= &rt61pci_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT61pci module information.
 */
static const struct pci_device_id rt61pci_device_table[] = {
	/* RT2561s */
	{ PCI_DEVICE(0x1814, 0x0301) },
	/* RT2561 v2 */
	{ PCI_DEVICE(0x1814, 0x0302) },
	/* RT2661 */
	{ PCI_DEVICE(0x1814, 0x0401) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
			"PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
MODULE_FIRMWARE(FIRMWARE_RT2561);
MODULE_FIRMWARE(FIRMWARE_RT2561s);
MODULE_FIRMWARE(FIRMWARE_RT2661);
MODULE_LICENSE("GPL");

static int rt61pci_probe(struct pci_dev *pci_dev,
			 const struct pci_device_id *id)
{
	return rt2x00pci_probe(pci_dev, &rt61pci_ops);
}

static struct pci_driver rt61pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt61pci_device_table,
	.probe		= rt61pci_probe,
	.remove		= rt2x00pci_remove,
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

module_pci_driver