// SPDX-License-Identifier: GPL-2.0
/******************************************************************************
 *
 * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
 *
 ******************************************************************************/
#define  _RTW_SECURITY_C_

#include <linux/crc32poly.h>
#include <drv_types.h>
#include <rtw_debug.h>

static const char *_security_type_str[] = {
	"N/A",
	"WEP40",
	"TKIP",
	"TKIP_WM",
	"AES",
	"WEP104",
	"SMS4",
	"WEP_WPA",
	"BIP",
};

const char *security_type_str(u8 value)
{
	if (value <= _BIP_)
		return _security_type_str[value];
	return NULL;
}

#ifdef DBG_SW_SEC_CNT
#define WEP_SW_ENC_CNT_INC(sec, ra) \
	if (is_broadcast_mac_addr(ra)) \
		sec->wep_sw_enc_cnt_bc++; \
	else if (is_multicast_mac_addr(ra)) \
		sec->wep_sw_enc_cnt_mc++; \
	else \
		sec->wep_sw_enc_cnt_uc++;

#define WEP_SW_DEC_CNT_INC(sec, ra) \
	if (is_broadcast_mac_addr(ra)) \
		sec->wep_sw_dec_cnt_bc++; \
	else if (is_multicast_mac_addr(ra)) \
		sec->wep_sw_dec_cnt_mc++; \
	else \
		sec->wep_sw_dec_cnt_uc++;

#define TKIP_SW_ENC_CNT_INC(sec, ra) \
	if (is_broadcast_mac_addr(ra)) \
		sec->tkip_sw_enc_cnt_bc++; \
	else if (is_multicast_mac_addr(ra)) \
		sec->tkip_sw_enc_cnt_mc++; \
	else \
		sec->tkip_sw_enc_cnt_uc++;

#define TKIP_SW_DEC_CNT_INC(sec, ra) \
	if (is_broadcast_mac_addr(ra)) \
		sec->tkip_sw_dec_cnt_bc++; \
	else if (is_multicast_mac_addr(ra)) \
		sec->tkip_sw_dec_cnt_mc++; \
	else \
		sec->tkip_sw_dec_cnt_uc++;

#define AES_SW_ENC_CNT_INC(sec, ra) \
	if (is_broadcast_mac_addr(ra)) \
		sec->aes_sw_enc_cnt_bc++; \
	else if (is_multicast_mac_addr(ra)) \
		sec->aes_sw_enc_cnt_mc++; \
	else \
		sec->aes_sw_enc_cnt_uc++;

#define AES_SW_DEC_CNT_INC(sec, ra) \
	if (is_broadcast_mac_addr(ra)) \
		sec->aes_sw_dec_cnt_bc++; \
	else if (is_multicast_mac_addr(ra)) \
		sec->aes_sw_dec_cnt_mc++; \
	else \
		sec->aes_sw_dec_cnt_uc++;
#else
#define WEP_SW_ENC_CNT_INC(sec, ra)
#define WEP_SW_DEC_CNT_INC(sec, ra)
#define TKIP_SW_ENC_CNT_INC(sec, ra)
#define TKIP_SW_DEC_CNT_INC(sec, ra)
#define AES_SW_ENC_CNT_INC(sec, ra)
#define AES_SW_DEC_CNT_INC(sec, ra)
#endif /* DBG_SW_SEC_CNT */

/* WEP related ===== */

struct arc4context {
	u32 x;
	u32 y;
	u8 state[256];
};


static void arcfour_init(struct arc4context	*parc4ctx, u8 *key, u32 key_len)
{
	u32 t, u;
	u32 keyindex;
	u32 stateindex;
	u8 *state;
	u32 counter;

	state = parc4ctx->state;
	parc4ctx->x = 0;
	parc4ctx->y = 0;
	for (counter = 0; counter < 256; counter++)
		state[counter] = (u8)counter;
	keyindex = 0;
	stateindex = 0;
	for (counter = 0; counter < 256; counter++) {
		t = state[counter];
		stateindex = (stateindex + key[keyindex] + t) & 0xff;
		u = state[stateindex];
		state[stateindex] = (u8)t;
		state[counter] = (u8)u;
		if (++keyindex >= key_len)
			keyindex = 0;
	}
}

static u32 arcfour_byte(struct arc4context	*parc4ctx)
{
	u32 x;
	u32 y;
	u32 sx, sy;
	u8 *state;

	state = parc4ctx->state;
	x = (parc4ctx->x + 1) & 0xff;
	sx = state[x];
	y = (sx + parc4ctx->y) & 0xff;
	sy = state[y];
	parc4ctx->x = x;
	parc4ctx->y = y;
	state[y] = (u8)sx;
	state[x] = (u8)sy;
	return state[(sx + sy) & 0xff];
}

static void arcfour_encrypt(
	struct arc4context *parc4ctx,
	u8 *dest,
	u8 *src,
	u32 len
)
{
	u32 i;

	for (i = 0; i < len; i++)
		dest[i] = src[i] ^ (unsigned char)arcfour_byte(parc4ctx);
}

static sint bcrc32initialized;
static u32 crc32_table[256];


static u8 crc32_reverseBit(u8 data)
{
	return((u8)((data<<7)&0x80) | ((data<<5)&0x40) | ((data<<3)&0x20) | ((data<<1)&0x10) | ((data>>1)&0x08) | ((data>>3)&0x04) | ((data>>5)&0x02) | ((data>>7)&0x01));
}

static void crc32_init(void)
{
	if (bcrc32initialized == 1)
		return;
	else {
		sint i, j;
		u32 c;
		u8 *p = (u8 *)&c, *p1;
		u8 k;

		c = 0x12340000;

		for (i = 0; i < 256; ++i) {
			k = crc32_reverseBit((u8)i);
			for (c = ((u32)k) << 24, j = 8; j > 0; --j) {
				c = c & 0x80000000 ? (c << 1) ^ CRC32_POLY_BE : (c << 1);
			}
			p1 = (u8 *)&crc32_table[i];

			p1[0] = crc32_reverseBit(p[3]);
			p1[1] = crc32_reverseBit(p[2]);
			p1[2] = crc32_reverseBit(p[1]);
			p1[3] = crc32_reverseBit(p[0]);
		}
		bcrc32initialized = 1;
	}
}

static __le32 getcrc32(u8 *buf, sint len)
{
	u8 *p;
	u32  crc;

	if (bcrc32initialized == 0)
		crc32_init();

	crc = 0xffffffff;       /* preload shift register, per CRC-32 spec */

	for (p = buf; len > 0; ++p, --len) {
		crc = crc32_table[(crc ^ *p) & 0xff] ^ (crc >> 8);
	}
	return cpu_to_le32(~crc);    /* transmit complement, per CRC-32 spec */
}


/*
	Need to consider the fragment  situation
*/
void rtw_wep_encrypt(struct adapter *padapter, u8 *pxmitframe)
{																	/*  exclude ICV */

	unsigned char crc[4];
	struct arc4context	 mycontext;

	sint	curfragnum, length;
	u32 keylength;

	u8 *pframe, *payload, *iv;    /* wepkey */
	u8 wepkey[16];
	u8   hw_hdr_offset = 0;
	struct	pkt_attrib	 *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
	struct	security_priv *psecuritypriv = &padapter->securitypriv;
	struct	xmit_priv 	*pxmitpriv = &padapter->xmitpriv;

	if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
		return;

	hw_hdr_offset = TXDESC_OFFSET;
	pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset;

	/* start to encrypt each fragment */
	if ((pattrib->encrypt == _WEP40_) || (pattrib->encrypt == _WEP104_)) {
		keylength = psecuritypriv->dot11DefKeylen[psecuritypriv->dot11PrivacyKeyIndex];

		for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) {
			iv = pframe+pattrib->hdrlen;
			memcpy(&wepkey[0], iv, 3);
			memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[psecuritypriv->dot11PrivacyKeyIndex].skey[0], keylength);
			payload = pframe+pattrib->iv_len+pattrib->hdrlen;

			if ((curfragnum+1) == pattrib->nr_frags) {	/* the last fragment */

				length = pattrib->last_txcmdsz-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;

				*((__le32 *)crc) = getcrc32(payload, length);

				arcfour_init(&mycontext, wepkey, 3+keylength);
				arcfour_encrypt(&mycontext, payload, payload, length);
				arcfour_encrypt(&mycontext, payload+length, crc, 4);

			} else {
				length = pxmitpriv->frag_len-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;
				*((__le32 *)crc) = getcrc32(payload, length);
				arcfour_init(&mycontext, wepkey, 3+keylength);
				arcfour_encrypt(&mycontext, payload, payload, length);
				arcfour_encrypt(&mycontext, payload+length, crc, 4);

				pframe += pxmitpriv->frag_len;
				pframe = (u8 *)RND4((SIZE_PTR)(pframe));
			}
		}

		WEP_SW_ENC_CNT_INC(psecuritypriv, pattrib->ra);
	}
}

void rtw_wep_decrypt(struct adapter  *padapter, u8 *precvframe)
{
	/*  exclude ICV */
	u8 crc[4];
	struct arc4context	 mycontext;
	sint	length;
	u32 keylength;
	u8 *pframe, *payload, *iv, wepkey[16];
	u8  keyindex;
	struct	rx_pkt_attrib	 *prxattrib = &(((union recv_frame *)precvframe)->u.hdr.attrib);
	struct	security_priv *psecuritypriv = &padapter->securitypriv;

	pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data;

	/* start to decrypt recvframe */
	if ((prxattrib->encrypt == _WEP40_) || (prxattrib->encrypt == _WEP104_)) {
		iv = pframe+prxattrib->hdrlen;
		/* keyindex =(iv[3]&0x3); */
		keyindex = prxattrib->key_index;
		keylength = psecuritypriv->dot11DefKeylen[keyindex];
		memcpy(&wepkey[0], iv, 3);
		/* memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[psecuritypriv->dot11PrivacyKeyIndex].skey[0], keylength); */
		memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[keyindex].skey[0], keylength);
		length = ((union recv_frame *)precvframe)->u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len;

		payload = pframe+prxattrib->iv_len+prxattrib->hdrlen;

		/* decrypt payload include icv */
		arcfour_init(&mycontext, wepkey, 3+keylength);
		arcfour_encrypt(&mycontext, payload, payload,  length);

		/* calculate icv and compare the icv */
		*((u32 *)crc) = le32_to_cpu(getcrc32(payload, length-4));

		if (crc[3] != payload[length-1] || crc[2] != payload[length-2] || crc[1] != payload[length-3] || crc[0] != payload[length-4]) {
			RT_TRACE(_module_rtl871x_security_c_, _drv_err_, ("rtw_wep_decrypt:icv error crc[3](%x)!=payload[length-1](%x) || crc[2](%x)!=payload[length-2](%x) || crc[1](%x)!=payload[length-3](%x) || crc[0](%x)!=payload[length-4](%x)\n",
						crc[3], payload[length-1], crc[2], payload[length-2], crc[1], payload[length-3], crc[0], payload[length-4]));
		}

		WEP_SW_DEC_CNT_INC(psecuritypriv, prxattrib->ra);
	}
	return;
}

/* 3		=====TKIP related ===== */

static u32 secmicgetuint32(u8 *p)
/*  Convert from Byte[] to Us3232 in a portable way */
{
	s32 i;
	u32 res = 0;

	for (i = 0; i < 4; i++) {
		res |= ((u32)(*p++)) << (8*i);
	}

	return res;
}

static void secmicputuint32(u8 *p, u32 val)
/*  Convert from Us3232 to Byte[] in a portable way */
{
	long i;

	for (i = 0; i < 4; i++) {
		*p++ = (u8) (val & 0xff);
		val >>= 8;
	}
}

static void secmicclear(struct mic_data *pmicdata)
{
/*  Reset the state to the empty message. */
	pmicdata->L = pmicdata->K0;
	pmicdata->R = pmicdata->K1;
	pmicdata->nBytesInM = 0;
	pmicdata->M = 0;
}

void rtw_secmicsetkey(struct mic_data *pmicdata, u8 *key)
{
	/*  Set the key */
	pmicdata->K0 = secmicgetuint32(key);
	pmicdata->K1 = secmicgetuint32(key + 4);
	/*  and reset the message */
	secmicclear(pmicdata);
}

void rtw_secmicappendbyte(struct mic_data *pmicdata, u8 b)
{
	/*  Append the byte to our word-sized buffer */
	pmicdata->M |= ((unsigned long)b) << (8*pmicdata->nBytesInM);
	pmicdata->nBytesInM++;
	/*  Process the word if it is full. */
	if (pmicdata->nBytesInM >= 4) {
		pmicdata->L ^= pmicdata->M;
		pmicdata->R ^= ROL32(pmicdata->L, 17);
		pmicdata->L += pmicdata->R;
		pmicdata->R ^= ((pmicdata->L & 0xff00ff00) >> 8) | ((pmicdata->L & 0x00ff00ff) << 8);
		pmicdata->L += pmicdata->R;
		pmicdata->R ^= ROL32(pmicdata->L, 3);
		pmicdata->L += pmicdata->R;
		pmicdata->R ^= ROR32(pmicdata->L, 2);
		pmicdata->L += pmicdata->R;
		/*  Clear the buffer */
		pmicdata->M = 0;
		pmicdata->nBytesInM = 0;
	}
}

void rtw_secmicappend(struct mic_data *pmicdata, u8 *src, u32 nbytes)
{
	/*  This is simple */
	while (nbytes > 0) {
		rtw_secmicappendbyte(pmicdata, *src++);
		nbytes--;
	}
}

void rtw_secgetmic(struct mic_data *pmicdata, u8 *dst)
{
	/*  Append the minimum padding */
	rtw_secmicappendbyte(pmicdata, 0x5a);
	rtw_secmicappendbyte(pmicdata, 0);
	rtw_secmicappendbyte(pmicdata, 0);
	rtw_secmicappendbyte(pmicdata, 0);
	rtw_secmicappendbyte(pmicdata, 0);
	/*  and then zeroes until the length is a multiple of 4 */
	while (pmicdata->nBytesInM != 0) {
		rtw_secmicappendbyte(pmicdata, 0);
	}
	/*  The appendByte function has already computed the result. */
	secmicputuint32(dst, pmicdata->L);
	secmicputuint32(dst+4, pmicdata->R);
	/*  Reset to the empty message. */
	secmicclear(pmicdata);
}


void rtw_seccalctkipmic(u8 *key, u8 *header, u8 *data, u32 data_len, u8 *mic_code, u8 pri)
{

	struct mic_data	micdata;
	u8 priority[4] = {0x0, 0x0, 0x0, 0x0};

	rtw_secmicsetkey(&micdata, key);
	priority[0] = pri;

	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
	if (header[1]&1) {   /* ToDS == 1 */
		rtw_secmicappend(&micdata, &header[16], 6);  /* DA */
		if (header[1]&2)  /* From Ds == 1 */
			rtw_secmicappend(&micdata, &header[24], 6);
		else
			rtw_secmicappend(&micdata, &header[10], 6);
	} else {	/* ToDS == 0 */
		rtw_secmicappend(&micdata, &header[4], 6);   /* DA */
		if (header[1]&2)  /* From Ds == 1 */
			rtw_secmicappend(&micdata, &header[16], 6);
		else
			rtw_secmicappend(&micdata, &header[10], 6);

	}
	rtw_secmicappend(&micdata, &priority[0], 4);


	rtw_secmicappend(&micdata, data, data_len);

	rtw_secgetmic(&micdata, mic_code);
}

/* macros for extraction/creation of unsigned char/unsigned short values  */
#define RotR1(v16)   ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15))
#define   Lo8(v16)   ((u8)((v16)       & 0x00FF))
#define   Hi8(v16)   ((u8)(((v16) >> 8) & 0x00FF))
#define  Lo16(v32)   ((u16)((v32)       & 0xFFFF))
#define  Hi16(v32)   ((u16)(((v32) >> 16) & 0xFFFF))
#define  Mk16(hi, lo) ((lo) ^ (((u16)(hi)) << 8))

/* select the Nth 16-bit word of the temporal key unsigned char array TK[]   */
#define  TK16(N)     Mk16(tk[2*(N)+1], tk[2*(N)])

/* S-box lookup: 16 bits --> 16 bits */
#define _S_(v16)     (Sbox1[0][Lo8(v16)] ^ Sbox1[1][Hi8(v16)])

/* fixed algorithm "parameters" */
#define PHASE1_LOOP_CNT   8    /* this needs to be "big enough"     */
#define TA_SIZE           6    /*  48-bit transmitter address       */
#define TK_SIZE          16    /* 128-bit temporal key              */
#define P1K_SIZE         10    /*  80-bit Phase1 key                */
#define RC4_KEY_SIZE     16    /* 128-bit RC4KEY (104 bits unknown) */


/* 2-unsigned char by 2-unsigned char subset of the full AES S-box table */
static const unsigned short Sbox1[2][256] = {      /* Sbox for hash (can be in ROM)     */
{
	 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
	 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
	 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
	 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
	 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
	 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
	 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
	 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
	 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
	 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
	 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
	 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
	 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
	 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
	 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
	 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
	 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
	 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
	 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
	 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
	 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
	 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
	 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
	 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
	 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
	 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
	 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
	 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
	 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
	 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
	 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
	 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
	},


	{  /* second half of table is unsigned char-reversed version of first! */
	 0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491,
	 0x5060, 0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC,
	 0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB,
	 0xEC41, 0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B,
	 0xC275, 0x1CE1, 0xAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83,
	 0x5C68, 0xF451, 0x34D1, 0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A,
	 0x0C08, 0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F,
	 0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA,
	 0x1B12, 0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, 0xEEB4, 0xFB5B,
	 0xF6A4, 0x4D76, 0x61B7, 0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713,
	 0xF5A6, 0x68B9, 0x0000, 0x2CC1, 0x6040, 0x1FE3, 0xC879, 0xEDB6,
	 0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0, 0x4A85,
	 0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411,
	 0xCF8A, 0x10E9, 0x0604, 0x81FE, 0xF0A0, 0x4478, 0xBA25, 0xE34B,
	 0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21, 0x4870, 0x04F1,
	 0xDF63, 0xC177, 0x75AF, 0x6342, 0x3020, 0x1AE5, 0x0EFD, 0x6DBF,
	 0x4C81, 0x1418, 0x3526, 0x2FC3, 0xE1BE, 0xA235, 0xCC88, 0x392E,
	 0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6,
	 0xA0C0, 0x9819, 0xD19E, 0x7FA3, 0x6644, 0x7E54, 0xAB3B, 0x830B,
	 0xCA8C, 0x29C7, 0xD36B, 0x3C28, 0x79A7, 0xE2BC, 0x1D16, 0x76AD,
	 0x3BDB, 0x5664, 0x4E74, 0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4B8,
	 0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2,
	 0x32D5, 0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049,
	 0xB4D8, 0xFAAC, 0x07F3, 0x25CF, 0xAFCA, 0x8EF4, 0xE947, 0x1810,
	 0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438, 0xF157, 0xC773, 0x5197,
	 0x23CB, 0x7CA1, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F,
	 0x90E0, 0x427C, 0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7, 0x121C,
	 0xA3C2, 0x5F6A, 0xF9AE, 0xD069, 0x9117, 0x5899, 0x273A, 0xB927,
	 0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733,
	 0xB62D, 0x223C, 0x9215, 0x20C9, 0x4987, 0xFFAA, 0x7850, 0x7AA5,
	 0x8F03, 0xF859, 0x8009, 0x171A, 0xDA65, 0x31D7, 0xC684, 0xB8D0,
	 0xC382, 0xB029, 0x775A, 0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C,
	}
};

 /*
**********************************************************************
* Routine: Phase 1 -- generate P1K, given TA, TK, IV32
*
* Inputs:
*     tk[]      = temporal key                         [128 bits]
*     ta[]      = transmitter's MAC address            [ 48 bits]
*     iv32      = upper 32 bits of IV                  [ 32 bits]
* Output:
*     p1k[]     = Phase 1 key                          [ 80 bits]
*
* Note:
*     This function only needs to be called every 2**16 packets,
*     although in theory it could be called every packet.
*
**********************************************************************
*/
static void phase1(u16 *p1k, const u8 *tk, const u8 *ta, u32 iv32)
{
	sint  i;

	/* Initialize the 80 bits of P1K[] from IV32 and TA[0..5]     */
	p1k[0]      = Lo16(iv32);
	p1k[1]      = Hi16(iv32);
	p1k[2]      = Mk16(ta[1], ta[0]); /* use TA[] as little-endian */
	p1k[3]      = Mk16(ta[3], ta[2]);
	p1k[4]      = Mk16(ta[5], ta[4]);

	/* Now compute an unbalanced Feistel cipher with 80-bit block */
	/* size on the 80-bit block P1K[], using the 128-bit key TK[] */
	for (i = 0; i < PHASE1_LOOP_CNT; i++) {
		/* Each add operation here is mod 2**16 */
		p1k[0] += _S_(p1k[4] ^ TK16((i&1)+0));
		p1k[1] += _S_(p1k[0] ^ TK16((i&1)+2));
		p1k[2] += _S_(p1k[1] ^ TK16((i&1)+4));
		p1k[3] += _S_(p1k[2] ^ TK16((i&1)+6));
		p1k[4] += _S_(p1k[3] ^ TK16((i&1)+0));
		p1k[4] +=  (unsigned short)i;          /* avoid "slide attacks" */
	}
}


/*
**********************************************************************
* Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16
*
* Inputs:
*     tk[]      = Temporal key                         [128 bits]
*     p1k[]     = Phase 1 output key                   [ 80 bits]
*     iv16      = low 16 bits of IV counter            [ 16 bits]
* Output:
*     rc4key[]  = the key used to encrypt the packet   [128 bits]
*
* Note:
*     The value {TA, IV32, IV16} for Phase1/Phase2 must be unique
*     across all packets using the same key TK value. Then, for a
*     given value of TK[], this TKIP48 construction guarantees that
*     the final RC4KEY value is unique across all packets.
*
* Suggested implementation optimization: if PPK[] is "overlaid"
*     appropriately on RC4KEY[], there is no need for the final
*     for loop below that copies the PPK[] result into RC4KEY[].
*
**********************************************************************
*/
static void phase2(u8 *rc4key, const u8 *tk, const u16 *p1k, u16 iv16)
{
	sint  i;
	u16 PPK[6];                          /* temporary key for mixing    */

	/* Note: all adds in the PPK[] equations below are mod 2**16         */
	for (i = 0; i < 5; i++)
		PPK[i] = p1k[i];      /* first, copy P1K to PPK      */

	PPK[5]  =  p1k[4]+iv16;             /* next,  add in IV16          */

	/* Bijective non-linear mixing of the 96 bits of PPK[0..5]           */
	PPK[0] +=    _S_(PPK[5] ^ TK16(0));   /* Mix key in each "round"     */
	PPK[1] +=    _S_(PPK[0] ^ TK16(1));
	PPK[2] +=    _S_(PPK[1] ^ TK16(2));
	PPK[3] +=    _S_(PPK[2] ^ TK16(3));
	PPK[4] +=    _S_(PPK[3] ^ TK16(4));
	PPK[5] +=    _S_(PPK[4] ^ TK16(5));   /* Total # S-box lookups == 6  */

	/* Final sweep: bijective, "linear". Rotates kill LSB correlations   */
	PPK[0] +=  RotR1(PPK[5] ^ TK16(6));
	PPK[1] +=  RotR1(PPK[0] ^ TK16(7));   /* Use all of TK[] in Phase2   */
	PPK[2] +=  RotR1(PPK[1]);
	PPK[3] +=  RotR1(PPK[2]);
	PPK[4] +=  RotR1(PPK[3]);
	PPK[5] +=  RotR1(PPK[4]);
	/* Note: At this point, for a given key TK[0..15], the 96-bit output */
	/*       value PPK[0..5] is guaranteed to be unique, as a function   */
	/*       of the 96-bit "input" value   {TA, IV32, IV16}. That is, P1K  */
	/*       is now a keyed permutation of {TA, IV32, IV16}.               */

	/* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key   */
	rc4key[0] = Hi8(iv16);                /* RC4KEY[0..2] is the WEP IV  */
	rc4key[1] = (Hi8(iv16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys  */
	rc4key[2] = Lo8(iv16);
	rc4key[3] = Lo8((PPK[5] ^ TK16(0)) >> 1);


	/* Copy 96 bits of PPK[0..5] to RC4KEY[4..15]  (little-endian)       */
	for (i = 0; i < 6; i++) {
		rc4key[4+2*i] = Lo8(PPK[i]);
		rc4key[5+2*i] = Hi8(PPK[i]);
	}
}


/* The hlen isn't include the IV */
u32 rtw_tkip_encrypt(struct adapter *padapter, u8 *pxmitframe)
{																	/*  exclude ICV */
	u16 pnl;
	u32 pnh;
	u8 rc4key[16];
	u8   ttkey[16];
	u8 crc[4];
	u8   hw_hdr_offset = 0;
	struct arc4context mycontext;
	sint			curfragnum, length;
	u32 prwskeylen;

	u8 *pframe, *payload, *iv, *prwskey;
	union pn48 dot11txpn;
	/* struct	sta_info 	*stainfo; */
	struct	pkt_attrib	 *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
	struct	security_priv *psecuritypriv = &padapter->securitypriv;
	struct	xmit_priv 	*pxmitpriv = &padapter->xmitpriv;
	u32 res = _SUCCESS;

	if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
		return _FAIL;

	hw_hdr_offset = TXDESC_OFFSET;
	pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset;

	/* 4 start to encrypt each fragment */
	if (pattrib->encrypt == _TKIP_) {

/*
		if (pattrib->psta)
		{
			stainfo = pattrib->psta;
		}
		else
		{
			DBG_871X("%s, call rtw_get_stainfo()\n", __func__);
			stainfo =rtw_get_stainfo(&padapter->stapriv ,&pattrib->ra[0]);
		}
*/
		/* if (stainfo!= NULL) */
		{
/*
			if (!(stainfo->state &_FW_LINKED))
			{
				DBG_871X("%s, psta->state(0x%x) != _FW_LINKED\n", __func__, stainfo->state);
				return _FAIL;
			}
*/
			RT_TRACE(_module_rtl871x_security_c_, _drv_err_, ("rtw_tkip_encrypt: stainfo!= NULL!!!\n"));

			if (IS_MCAST(pattrib->ra))
				prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey;
			else
				/* prwskey =&stainfo->dot118021x_UncstKey.skey[0]; */
				prwskey = pattrib->dot118021x_UncstKey.skey;

			prwskeylen = 16;

			for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) {
				iv = pframe+pattrib->hdrlen;
				payload = pframe+pattrib->iv_len+pattrib->hdrlen;

				GET_TKIP_PN(iv, dot11txpn);

				pnl = (u16)(dot11txpn.val);
				pnh = (u32)(dot11txpn.val>>16);

				phase1((u16 *)&ttkey[0], prwskey, &pattrib->ta[0], pnh);

				phase2(&rc4key[0], prwskey, (u16 *)&ttkey[0], pnl);

				if ((curfragnum+1) == pattrib->nr_frags) {	/* 4 the last fragment */
					length = pattrib->last_txcmdsz-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;
					RT_TRACE(_module_rtl871x_security_c_, _drv_info_, ("pattrib->iv_len =%x, pattrib->icv_len =%x\n", pattrib->iv_len, pattrib->icv_len));
					*((__le32 *)crc) = getcrc32(payload, length);/* modified by Amy*/

					arcfour_init(&mycontext, rc4key, 16);
					arcfour_encrypt(&mycontext, payload, payload, length);
					arcfour_encrypt(&mycontext, payload+length, crc, 4);

				} else {
					length = pxmitpriv->frag_len-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;
					*((__le32 *)crc) = getcrc32(payload, length);/* modified by Amy*/
					arcfour_init(&mycontext, rc4key, 16);
					arcfour_encrypt(&mycontext, payload, payload, length);
					arcfour_encrypt(&mycontext, payload+length, crc, 4);

					pframe += pxmitpriv->frag_len;
					pframe = (u8 *)RND4((SIZE_PTR)(pframe));
				}
			}

			TKIP_SW_ENC_CNT_INC(psecuritypriv, pattrib->ra);
		}
/*
		else {
			RT_TRACE(_module_rtl871x_security_c_, _drv_err_, ("rtw_tkip_encrypt: stainfo == NULL!!!\n"));
			DBG_871X("%s, psta ==NUL\n", __func__);
			res = _FAIL;
		}
*/

	}
	return res;
}


/* The hlen isn't include the IV */
u32 rtw_tkip_decrypt(struct adapter *padapter, u8 *precvframe)
{																	/*  exclude ICV */
	u16 pnl;
	u32 pnh;
	u8   rc4key[16];
	u8   ttkey[16];
	u8 crc[4];
	struct arc4context mycontext;
	sint			length;
	u32 prwskeylen;

	u8 *pframe, *payload, *iv, *prwskey;
	union pn48 dot11txpn;
	struct	sta_info 	*stainfo;
	struct	rx_pkt_attrib	 *prxattrib = &((union recv_frame *)precvframe)->u.hdr.attrib;
	struct	security_priv *psecuritypriv = &padapter->securitypriv;
/* 	struct	recv_priv 	*precvpriv =&padapter->recvpriv; */
	u32 	res = _SUCCESS;

	pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data;

	/* 4 start to decrypt recvframe */
	if (prxattrib->encrypt == _TKIP_) {
		stainfo = rtw_get_stainfo(&padapter->stapriv, &prxattrib->ta[0]);
		if (stainfo != NULL) {
			if (IS_MCAST(prxattrib->ra)) {
				static unsigned long start;
				static u32 no_gkey_bc_cnt;
				static u32 no_gkey_mc_cnt;

				if (psecuritypriv->binstallGrpkey == false) {
					res = _FAIL;

					if (start == 0)
						start = jiffies;

					if (is_broadcast_mac_addr(prxattrib->ra))
						no_gkey_bc_cnt++;
					else
						no_gkey_mc_cnt++;

					if (jiffies_to_msecs(jiffies - start) > 1000) {
						if (no_gkey_bc_cnt || no_gkey_mc_cnt) {
							DBG_871X_LEVEL(_drv_always_, FUNC_ADPT_FMT" no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n",
								FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt);
						}
						start = jiffies;
						no_gkey_bc_cnt = 0;
						no_gkey_mc_cnt = 0;
					}
					goto exit;
				}

				if (no_gkey_bc_cnt || no_gkey_mc_cnt) {
					DBG_871X_LEVEL(_drv_always_, FUNC_ADPT_FMT" gkey installed. no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n",
						FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt);
				}
				start = 0;
				no_gkey_bc_cnt = 0;
				no_gkey_mc_cnt = 0;

				/* DBG_871X("rx bc/mc packets, to perform sw rtw_tkip_decrypt\n"); */
				/* prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; */
				prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey;
				prwskeylen = 16;
			} else {
				prwskey = &stainfo->dot118021x_UncstKey.skey[0];
				prwskeylen = 16;
			}

			iv = pframe+prxattrib->hdrlen;
			payload = pframe+prxattrib->iv_len+prxattrib->hdrlen;
			length = ((union recv_frame *)precvframe)->u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len;

			GET_TKIP_PN(iv, dot11txpn);

			pnl = (u16)(dot11txpn.val);
			pnh = (u32)(dot11txpn.val>>16);

			phase1((u16 *)&ttkey[0], prwskey, &prxattrib->ta[0], pnh);
			phase2(&rc4key[0], prwskey, (unsigned short *)&ttkey[0], pnl);

			/* 4 decrypt payload include icv */

			arcfour_init(&mycontext, rc4key, 16);
			arcfour_encrypt(&mycontext, payload, payload, length);

			*((u32 *)crc) = le32_to_cpu(getcrc32(payload, length-4));

			if (crc[3] != payload[length-1] || crc[2] != payload[length-2] || crc[1] != payload[length-3] || crc[0] != payload[length-4]) {
				RT_TRACE(_module_rtl871x_security_c_, _drv_err_,
					 ("rtw_wep_decrypt:icv error crc[3](%x)!=payload[length-1](%x) || crc[2](%x)!=payload[length-2](%x) || crc[1](%x)!=payload[length-3](%x) || crc[0](%x)!=payload[length-4](%x)\n",
					 crc[3], payload[length-1], crc[2], payload[length-2], crc[1], payload[length-3], crc[0], payload[length-4]));
				res = _FAIL;
			}

			TKIP_SW_DEC_CNT_INC(psecuritypriv, prxattrib->ra);
		} else {
			RT_TRACE(_module_rtl871x_security_c_, _drv_err_, ("rtw_tkip_decrypt: stainfo == NULL!!!\n"));
			res = _FAIL;
		}

	}
exit:
	return res;

}


/* 3			=====AES related ===== */



#define MAX_MSG_SIZE	2048
/*****************************/
/******** SBOX Table *********/
/*****************************/

	static  u8 sbox_table[256] = {
			0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
			0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
			0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
			0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
			0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
			0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
			0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
			0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
			0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
			0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
			0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
			0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
			0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
			0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
			0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
			0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
			0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
			0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
			0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
			0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
			0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
			0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
			0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
			0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
			0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
			0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
			0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
			0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
			0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
			0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
			0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
			0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
		};

/*****************************/
/**** Function Prototypes ****/
/*****************************/

static void bitwise_xor(u8 *ina, u8 *inb, u8 *out);
static void construct_mic_iv(
	u8 *mic_header1,
	sint qc_exists,
	sint a4_exists,
	u8 *mpdu,
	uint payload_length,
	u8 *pn_vector,
	uint frtype
);/*  add for CONFIG_IEEE80211W, none 11w also can use */
static void construct_mic_header1(
	u8 *mic_header1,
	sint header_length,
	u8 *mpdu,
	uint frtype
);/*  add for CONFIG_IEEE80211W, none 11w also can use */
static void construct_mic_header2(
	u8 *mic_header2,
	u8 *mpdu,
	sint a4_exists,
	sint qc_exists
);
static void construct_ctr_preload(
	u8 *ctr_preload,
	sint a4_exists,
	sint qc_exists,
	u8 *mpdu,
	u8 *pn_vector,
	sint c,
	uint frtype
);/*  add for CONFIG_IEEE80211W, none 11w also can use */
static void xor_128(u8 *a, u8 *b, u8 *out);
static void xor_32(u8 *a, u8 *b, u8 *out);
static u8 sbox(u8 a);
static void next_key(u8 *key, sint round);
static void byte_sub(u8 *in, u8 *out);
static void shift_row(u8 *in, u8 *out);
static void mix_column(u8 *in, u8 *out);
static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext);


/****************************************/
/* aes128k128d()                        */
/* Performs a 128 bit AES encrypt with  */
/* 128 bit data.                        */
/****************************************/
static void xor_128(u8 *a, u8 *b, u8 *out)
{
		sint i;

		for (i = 0; i < 16; i++) {
			out[i] = a[i] ^ b[i];
		}
}


static void xor_32(u8 *a, u8 *b, u8 *out)
{
		sint i;

		for (i = 0; i < 4; i++) {
			out[i] = a[i] ^ b[i];
		}
}


static u8 sbox(u8 a)
{
		return sbox_table[(sint)a];
}


static void next_key(u8 *key, sint round)
{
		u8 rcon;
		u8 sbox_key[4];
		u8 rcon_table[12] = {
			0x01, 0x02, 0x04, 0x08,
			0x10, 0x20, 0x40, 0x80,
			0x1b, 0x36, 0x36, 0x36
		};
		sbox_key[0] = sbox(key[13]);
		sbox_key[1] = sbox(key[14]);
		sbox_key[2] = sbox(key[15]);
		sbox_key[3] = sbox(key[12]);

		rcon = rcon_table[round];

		xor_32(&key[0], sbox_key, &key[0]);
		key[0] = key[0] ^ rcon;

		xor_32(&key[4], &key[0], &key[4]);
		xor_32(&key[8], &key[4], &key[8]);
		xor_32(&key[12], &key[8], &key[12]);
}


static void byte_sub(u8 *in, u8 *out)
{
		sint i;

		for (i = 0; i < 16; i++) {
			out[i] = sbox(in[i]);
		}
}


static void shift_row(u8 *in, u8 *out)
{
		out[0] =  in[0];
		out[1] =  in[5];
		out[2] =  in[10];
		out[3] =  in[15];
		out[4] =  in[4];
		out[5] =  in[9];
		out[6] =  in[14];
		out[7] =  in[3];
		out[8] =  in[8];
		out[9] =  in[13];
		out[10] = in[2];
		out[11] = in[7];
		out[12] = in[12];
		out[13] = in[1];
		out[14] = in[6];
		out[15] = in[11];
}


static void mix_column(u8 *in, u8 *out)
{
		sint i;
		u8 add1b[4];
		u8 add1bf7[4];
		u8 rotl[4];
		u8 swap_halfs[4];
		u8 andf7[4];
		u8 rotr[4];
		u8 temp[4];
		u8 tempb[4];

		for (i = 0; i < 4; i++) {
			if ((in[i] & 0x80) == 0x80)
				add1b[i] = 0x1b;
			else
				add1b[i] = 0x00;
		}

		swap_halfs[0] = in[2];    /* Swap halfs */
		swap_halfs[1] = in[3];
		swap_halfs[2] = in[0];
		swap_halfs[3] = in[1];

		rotl[0] = in[3];        /* Rotate left 8 bits */
		rotl[1] = in[0];
		rotl[2] = in[1];
		rotl[3] = in[2];

		andf7[0] = in[0] & 0x7f;
		andf7[1] = in[1] & 0x7f;
		andf7[2] = in[2] & 0x7f;
		andf7[3] = in[3] & 0x7f;

		for (i = 3; i > 0; i--) {  /* logical shift left 1 bit */
			andf7[i] = andf7[i] << 1;
			if ((andf7[i-1] & 0x80) == 0x80)
				andf7[i] = (andf7[i] | 0x01);
		}
		andf7[0] = andf7[0] << 1;
		andf7[0] = andf7[0] & 0xfe;

		xor_32(add1b, andf7, add1bf7);

		xor_32(in, add1bf7, rotr);

		temp[0] = rotr[0];         /* Rotate right 8 bits */
		rotr[0] = rotr[1];
		rotr[1] = rotr[2];
		rotr[2] = rotr[3];
		rotr[3] = temp[0];

		xor_32(add1bf7, rotr, temp);
		xor_32(swap_halfs, rotl, tempb);
		xor_32(temp, tempb, out);
}

static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext)
{
		sint round;
		sint i;
		u8 intermediatea[16];
		u8 intermediateb[16];
		u8 round_key[16];

		for (i = 0; i < 16; i++)
			round_key[i] = key[i];

		for (round = 0; round < 11; round++) {
			if (round == 0) {
				xor_128(round_key, data, ciphertext);
				next_key(round_key, round);
			} else if (round == 10) {
				byte_sub(ciphertext, intermediatea);
				shift_row(intermediatea, intermediateb);
				xor_128(intermediateb, round_key, ciphertext);
			} else {   /* 1 - 9 */
				byte_sub(ciphertext, intermediatea);
				shift_row(intermediatea, intermediateb);
				mix_column(&intermediateb[0], &intermediatea[0]);
				mix_column(&intermediateb[4], &intermediatea[4]);
				mix_column(&intermediateb[8], &intermediatea[8]);
				mix_column(&intermediateb[12], &intermediatea[12]);
				xor_128(intermediatea, round_key, ciphertext);
				next_key(round_key, round);
			}
		}
}


/************************************************/
/* construct_mic_iv()                           */
/* Builds the MIC IV from header fields and PN  */
/* Baron think the function is construct CCM    */
/* nonce                                        */
/************************************************/
static void construct_mic_iv(
	u8 *mic_iv,
	sint qc_exists,
	sint a4_exists,
	u8 *mpdu,
	uint payload_length,
	u8 *pn_vector,
	uint frtype/*  add for CONFIG_IEEE80211W, none 11w also can use */
)
{
		sint i;

		mic_iv[0] = 0x59;

		if (qc_exists && a4_exists)
			mic_iv[1] = mpdu[30] & 0x0f;    /* QoS_TC           */

		if (qc_exists && !a4_exists)
			mic_iv[1] = mpdu[24] & 0x0f;   /* mute bits 7-4    */

		if (!qc_exists)
			mic_iv[1] = 0x00;

		/* 802.11w management frame should set management bit(4) */
		if (frtype == WIFI_MGT_TYPE)
			mic_iv[1] |= BIT(4);

		for (i = 2; i < 8; i++)
			mic_iv[i] = mpdu[i + 8];   /* mic_iv[2:7] = A2[0:5] = mpdu[10:15] */
		#ifdef CONSISTENT_PN_ORDER
		for (i = 8; i < 14; i++)
			mic_iv[i] = pn_vector[i - 8];           /* mic_iv[8:13] = PN[0:5] */
		#else
		for (i = 8; i < 14; i++)
			mic_iv[i] = pn_vector[13 - i];          /* mic_iv[8:13] = PN[5:0] */
		#endif
		mic_iv[14] = (unsigned char) (payload_length / 256);
		mic_iv[15] = (unsigned char) (payload_length % 256);
}


/************************************************/
/* construct_mic_header1()                      */
/* Builds the first MIC header block from       */
/* header fields.                               */
/* Build AAD SC, A1, A2                           */
/************************************************/
static void construct_mic_header1(
	u8 *mic_header1,
	sint header_length,
	u8 *mpdu,
	uint frtype/*  add for CONFIG_IEEE80211W, none 11w also can use */
)
{
		mic_header1[0] = (u8)((header_length - 2) / 256);
		mic_header1[1] = (u8)((header_length - 2) % 256);

		/* 802.11w management frame don't AND subtype bits 4, 5, 6 of frame control field */
		if (frtype == WIFI_MGT_TYPE)
			mic_header1[2] = mpdu[0];
		else
			mic_header1[2] = mpdu[0] & 0xcf;    /* Mute CF poll & CF ack bits */

		mic_header1[3] = mpdu[1] & 0xc7;    /* Mute retry, more data and pwr mgt bits */
		mic_header1[4] = mpdu[4];       /* A1 */
		mic_header1[5] = mpdu[5];
		mic_header1[6] = mpdu[6];
		mic_header1[7] = mpdu[7];
		mic_header1[8] = mpdu[8];
		mic_header1[9] = mpdu[9];
		mic_header1[10] = mpdu[10];     /* A2 */
		mic_header1[11] = mpdu[11];
		mic_header1[12] = mpdu[12];
		mic_header1[13] = mpdu[13];
		mic_header1[14] = mpdu[14];
		mic_header1[15] = mpdu[15];
}


/************************************************/
/* construct_mic_header2()                      */
/* Builds the last MIC header block from        */
/* header fields.                               */
/************************************************/
static void construct_mic_header2(
	u8 *mic_header2,
	u8 *mpdu,
	sint a4_exists,
	sint qc_exists
)
{
		sint i;

		for (i = 0; i < 16; i++)
			mic_header2[i] = 0x00;

		mic_header2[0] = mpdu[16];    /* A3 */
		mic_header2[1] = mpdu[17];
		mic_header2[2] = mpdu[18];
		mic_header2[3] = mpdu[19];
		mic_header2[4] = mpdu[20];
		mic_header2[5] = mpdu[21];

		mic_header2[6] = 0x00;
		mic_header2[7] = 0x00; /* mpdu[23]; */


		if (!qc_exists && a4_exists) {
			for (i = 0; i < 6; i++)
				mic_header2[8+i] = mpdu[24+i];   /* A4 */

		}

		if (qc_exists && !a4_exists) {
			mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */
			mic_header2[9] = mpdu[25] & 0x00;
		}

		if (qc_exists && a4_exists) {
			for (i = 0; i < 6; i++)
				mic_header2[8+i] = mpdu[24+i];   /* A4 */

			mic_header2[14] = mpdu[30] & 0x0f;
			mic_header2[15] = mpdu[31] & 0x00;
		}

}

/************************************************/
/* construct_mic_header2()                      */
/* Builds the last MIC header block from        */
/* header fields.                               */
/* Baron think the function is construct CCM    */
/* nonce                                        */
/************************************************/
static void construct_ctr_preload(
	u8 *ctr_preload,
	sint a4_exists,
	sint qc_exists,
	u8 *mpdu,
	u8 *pn_vector,
	sint c,
	uint frtype /*  add for CONFIG_IEEE80211W, none 11w also can use */
)
{
	sint i = 0;

	for (i = 0; i < 16; i++)
		ctr_preload[i] = 0x00;
	i = 0;

	ctr_preload[0] = 0x01;                                  /* flag */
	if (qc_exists && a4_exists)
		ctr_preload[1] = mpdu[30] & 0x0f;   /* QoC_Control */
	if (qc_exists && !a4_exists)
		ctr_preload[1] = mpdu[24] & 0x0f;

	/* 802.11w management frame should set management bit(4) */
	if (frtype == WIFI_MGT_TYPE)
		ctr_preload[1] |= BIT(4);

	for (i = 2; i < 8; i++)
		ctr_preload[i] = mpdu[i + 8];                       /* ctr_preload[2:7] = A2[0:5] = mpdu[10:15] */
#ifdef CONSISTENT_PN_ORDER
	for (i = 8; i < 14; i++)
		ctr_preload[i] =    pn_vector[i - 8];           /* ctr_preload[8:13] = PN[0:5] */
#else
	for (i = 8; i < 14; i++)
		ctr_preload[i] =    pn_vector[13 - i];          /* ctr_preload[8:13] = PN[5:0] */
#endif
	ctr_preload[14] =  (unsigned char) (c / 256); /* Ctr */
	ctr_preload[15] =  (unsigned char) (c % 256);
}


/************************************/
/* bitwise_xor()                    */
/* A 128 bit, bitwise exclusive or  */
/************************************/
static void bitwise_xor(u8 *ina, u8 *inb, u8 *out)
{
		sint i;

		for (i = 0; i < 16; i++) {
			out[i] = ina[i] ^ inb[i];
		}
}


static sint aes_cipher(u8 *key, uint	hdrlen,
			u8 *pframe, uint plen)
{
	uint	qc_exists, a4_exists, i, j, payload_remainder,
		num_blocks, payload_index;

	u8 pn_vector[6];
	u8 mic_iv[16];
	u8 mic_header1[16];
	u8 mic_header2[16];
	u8 ctr_preload[16];

	/* Intermediate Buffers */
	u8 chain_buffer[16];
	u8 aes_out[16];
	u8 padded_buffer[16];
	u8 mic[8];
	uint	frtype  = GetFrameType(pframe);
	uint	frsubtype  = GetFrameSubType(pframe);

	frsubtype = frsubtype>>4;


	memset((void *)mic_iv, 0, 16);
	memset((void *)mic_header1, 0, 16);
	memset((void *)mic_header2, 0, 16);
	memset((void *)ctr_preload, 0, 16);
	memset((void *)chain_buffer, 0, 16);
	memset((void *)aes_out, 0, 16);
	memset((void *)padded_buffer, 0, 16);

	if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen ==  WLAN_HDR_A3_QOS_LEN))
		a4_exists = 0;
	else
		a4_exists = 1;

	if (((frtype|frsubtype) == WIFI_DATA_CFACK) ||
	    ((frtype|frsubtype) == WIFI_DATA_CFPOLL) ||
	    ((frtype|frsubtype) == WIFI_DATA_CFACKPOLL)) {
		qc_exists = 1;
		if (hdrlen !=  WLAN_HDR_A3_QOS_LEN)
			hdrlen += 2;

	} else if ((frtype == WIFI_DATA) && /*  add for CONFIG_IEEE80211W, none 11w also can use */
		   ((frsubtype == 0x08) ||
		   (frsubtype == 0x09) ||
		   (frsubtype == 0x0a) ||
		   (frsubtype == 0x0b))) {
		if (hdrlen !=  WLAN_HDR_A3_QOS_LEN)
			hdrlen += 2;

		qc_exists = 1;
	} else
		qc_exists = 0;

	pn_vector[0] = pframe[hdrlen];
	pn_vector[1] = pframe[hdrlen+1];
	pn_vector[2] = pframe[hdrlen+4];
	pn_vector[3] = pframe[hdrlen+5];
	pn_vector[4] = pframe[hdrlen+6];
	pn_vector[5] = pframe[hdrlen+7];

	construct_mic_iv(
			mic_iv,
			qc_exists,
			a4_exists,
			pframe,	 /* message, */
			plen,
			pn_vector,
			frtype /*  add for CONFIG_IEEE80211W, none 11w also can use */
	);

	construct_mic_header1(
		mic_header1,
		hdrlen,
		pframe,	/* message */
		frtype /*  add for CONFIG_IEEE80211W, none 11w also can use */
	);
	construct_mic_header2(
		mic_header2,
		pframe,	/* message, */
		a4_exists,
		qc_exists
	);


	payload_remainder = plen % 16;
	num_blocks = plen / 16;

	/* Find start of payload */
	payload_index = (hdrlen + 8);

	/* Calculate MIC */
	aes128k128d(key, mic_iv, aes_out);
	bitwise_xor(aes_out, mic_header1, chain_buffer);
	aes128k128d(key, chain_buffer, aes_out);
	bitwise_xor(aes_out, mic_header2, chain_buffer);
	aes128k128d(key, chain_buffer, aes_out);

	for (i = 0; i < num_blocks; i++) {
		bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);/* bitwise_xor(aes_out, &message[payload_index], chain_buffer); */

		payload_index += 16;
		aes128k128d(key, chain_buffer, aes_out);
	}

	/* Add on the final payload block if it needs padding */
	if (payload_remainder > 0) {
		for (j = 0; j < 16; j++)
			padded_buffer[j] = 0x00;
		for (j = 0; j < payload_remainder; j++) {
			padded_buffer[j] = pframe[payload_index++];/* padded_buffer[j] = message[payload_index++]; */
		}
		bitwise_xor(aes_out, padded_buffer, chain_buffer);
		aes128k128d(key, chain_buffer, aes_out);

	}

	for (j = 0 ; j < 8; j++)
		mic[j] = aes_out[j];

	/* Insert MIC into payload */
	for (j = 0; j < 8; j++)
		pframe[payload_index+j] = mic[j];	/* message[payload_index+j] = mic[j]; */

	payload_index = hdrlen + 8;
	for (i = 0; i < num_blocks; i++) {
		construct_ctr_preload(
			ctr_preload,
			a4_exists,
			qc_exists,
			pframe,	/* message, */
			pn_vector,
			i+1,
			frtype
		); /*  add for CONFIG_IEEE80211W, none 11w also can use */
		aes128k128d(key, ctr_preload, aes_out);
		bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);/* bitwise_xor(aes_out, &message[payload_index], chain_buffer); */
		for (j = 0; j < 16; j++)
			pframe[payload_index++] = chain_buffer[j];/* for (j = 0; j<16;j++) message[payload_index++] = chain_buffer[j]; */
	}

	if (payload_remainder > 0) {
		/* If there is a short final block, then pad it,*/
		/* encrypt it and copy the unpadded part back   */
		construct_ctr_preload(
			ctr_preload,
			a4_exists,
			qc_exists,
			pframe,	/* message, */
			pn_vector,
			num_blocks+1,
			frtype
		); /*  add for CONFIG_IEEE80211W, none 11w also can use */

		for (j = 0; j < 16; j++)
			padded_buffer[j] = 0x00;
		for (j = 0; j < payload_remainder; j++)
			padded_buffer[j] = pframe[payload_index+j];/* padded_buffer[j] = message[payload_index+j]; */

		aes128k128d(key, ctr_preload, aes_out);
		bitwise_xor(aes_out, padded_buffer, chain_buffer);
		for (j = 0; j < payload_remainder; j++)
			pframe[payload_index++] = chain_buffer[j];/* for (j = 0; j<payload_remainder;j++) message[payload_index++] = chain_buffer[j]; */
	}

	/* Encrypt the MIC */
	construct_ctr_preload(
		ctr_preload,
		a4_exists,
		qc_exists,
		pframe,	/* message, */
		pn_vector,
		0,
		frtype
	); /*  add for CONFIG_IEEE80211W, none 11w also can use */

	for (j = 0; j < 16; j++)
		padded_buffer[j] = 0x00;
	for (j = 0; j < 8; j++)
		padded_buffer[j] = pframe[j+hdrlen+8+plen];/* padded_buffer[j] = message[j+hdrlen+8+plen]; */

	aes128k128d(key, ctr_preload, aes_out);
	bitwise_xor(aes_out, padded_buffer, chain_buffer);
	for (j = 0; j < 8; j++)
		 pframe[payload_index++] = chain_buffer[j];/* for (j = 0; j<8;j++) message[payload_index++] = chain_buffer[j]; */

	return _SUCCESS;
}

u32 rtw_aes_encrypt(struct adapter *padapter, u8 *pxmitframe)
{	/*  exclude ICV */


	/*static*/
/* 	unsigned char message[MAX_MSG_SIZE]; */

	/* Intermediate Buffers */
	sint	curfragnum, length;
	u32 prwskeylen;
	u8 *pframe, *prwskey;	/*  *payload,*iv */
	u8   hw_hdr_offset = 0;
	/* struct	sta_info 	*stainfo = NULL; */
	struct	pkt_attrib	 *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
	struct	security_priv *psecuritypriv = &padapter->securitypriv;
	struct	xmit_priv 	*pxmitpriv = &padapter->xmitpriv;

/* 	uint	offset = 0; */
	u32 res = _SUCCESS;

	if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
		return _FAIL;

	hw_hdr_offset = TXDESC_OFFSET;
	pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset;

	/* 4 start to encrypt each fragment */
	if (pattrib->encrypt == _AES_) {
		RT_TRACE(_module_rtl871x_security_c_, _drv_err_, ("rtw_aes_encrypt: stainfo!= NULL!!!\n"));

		if (IS_MCAST(pattrib->ra))
			prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey;
		else
			/* prwskey =&stainfo->dot118021x_UncstKey.skey[0]; */
			prwskey = pattrib->dot118021x_UncstKey.skey;

		prwskeylen = 16;

		for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) {
			if ((curfragnum+1) == pattrib->nr_frags) {	/* 4 the last fragment */
				length = pattrib->last_txcmdsz-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;

				aes_cipher(prwskey, pattrib->hdrlen, pframe, length);
			} else {
				length = pxmitpriv->frag_len-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;

				aes_cipher(prwskey, pattrib->hdrlen, pframe, length);
				pframe += pxmitpriv->frag_len;
				pframe = (u8 *)RND4((SIZE_PTR)(pframe));
			}
		}

		AES_SW_ENC_CNT_INC(psecuritypriv, pattrib->ra);
	}
	return res;
}

static sint aes_decipher(u8 *key, uint	hdrlen,
			u8 *pframe, uint plen)
{
	static u8 message[MAX_MSG_SIZE];
	uint	qc_exists, a4_exists, i, j, payload_remainder,
			num_blocks, payload_index;
	sint res = _SUCCESS;
	u8 pn_vector[6];
	u8 mic_iv[16];
	u8 mic_header1[16];
	u8 mic_header2[16];
	u8 ctr_preload[16];

		/* Intermediate Buffers */
	u8 chain_buffer[16];
	u8 aes_out[16];
	u8 padded_buffer[16];
	u8 mic[8];


/* 	uint	offset = 0; */
	uint	frtype  = GetFrameType(pframe);
	uint	frsubtype  = GetFrameSubType(pframe);

	frsubtype = frsubtype>>4;


	memset((void *)mic_iv, 0, 16);
	memset((void *)mic_header1, 0, 16);
	memset((void *)mic_header2, 0, 16);
	memset((void *)ctr_preload, 0, 16);
	memset((void *)chain_buffer, 0, 16);
	memset((void *)aes_out, 0, 16);
	memset((void *)padded_buffer, 0, 16);

	/* start to decrypt the payload */

	num_blocks = (plen-8) / 16; /* plen including LLC, payload_length and mic) */

	payload_remainder = (plen-8) % 16;

	pn_vector[0]  = pframe[hdrlen];
	pn_vector[1]  = pframe[hdrlen+1];
	pn_vector[2]  = pframe[hdrlen+4];
	pn_vector[3]  = pframe[hdrlen+5];
	pn_vector[4]  = pframe[hdrlen+6];
	pn_vector[5]  = pframe[hdrlen+7];

	if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen ==  WLAN_HDR_A3_QOS_LEN))
		a4_exists = 0;
	else
		a4_exists = 1;

	if (((frtype|frsubtype) == WIFI_DATA_CFACK) ||
	    ((frtype|frsubtype) == WIFI_DATA_CFPOLL) ||
	    ((frtype|frsubtype) == WIFI_DATA_CFACKPOLL)) {
		qc_exists = 1;
		if (hdrlen !=  WLAN_HDR_A3_QOS_LEN) {
			hdrlen += 2;
		}
	} else if ((frtype == WIFI_DATA) && /* only for data packet . add for CONFIG_IEEE80211W, none 11w also can use */
		   ((frsubtype == 0x08) ||
		   (frsubtype == 0x09) ||
		   (frsubtype == 0x0a) ||
		   (frsubtype == 0x0b))) {
		if (hdrlen !=  WLAN_HDR_A3_QOS_LEN) {
			hdrlen += 2;
		}
		qc_exists = 1;
	} else
		qc_exists = 0;


	/*  now, decrypt pframe with hdrlen offset and plen long */

	payload_index = hdrlen + 8; /*  8 is for extiv */

	for (i = 0; i < num_blocks; i++) {
			construct_ctr_preload(
				ctr_preload,
				a4_exists,
				qc_exists,
				pframe,
				pn_vector,
				i+1,
				frtype /*  add for CONFIG_IEEE80211W, none 11w also can use */
			);

			aes128k128d(key, ctr_preload, aes_out);
			bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);

			for (j = 0; j < 16; j++)
				pframe[payload_index++] = chain_buffer[j];
		}

	if (payload_remainder > 0) {
		/* If there is a short final block, then pad it,*/
		/* encrypt it and copy the unpadded part back   */
		construct_ctr_preload(
			ctr_preload,
			a4_exists,
			qc_exists,
			pframe,
			pn_vector,
			num_blocks+1,
			frtype /*  add for CONFIG_IEEE80211W, none 11w also can use */
		);

		for (j = 0; j < 16; j++)
			padded_buffer[j] = 0x00;
		for (j = 0; j < payload_remainder; j++) {
			padded_buffer[j] = pframe[payload_index+j];
		}
		aes128k128d(key, ctr_preload, aes_out);
		bitwise_xor(aes_out, padded_buffer, chain_buffer);
		for (j = 0; j < payload_remainder; j++)
			pframe[payload_index++] = chain_buffer[j];
	}

	/* start to calculate the mic */
	if ((hdrlen + plen+8) <= MAX_MSG_SIZE)
		memcpy((void *)message, pframe, (hdrlen + plen+8)); /* 8 is for ext iv len */


	pn_vector[0] = pframe[hdrlen];
	pn_vector[1] = pframe[hdrlen+1];
	pn_vector[2] = pframe[hdrlen+4];
	pn_vector[3] = pframe[hdrlen+5];
	pn_vector[4] = pframe[hdrlen+6];
	pn_vector[5] = pframe[hdrlen+7];



	construct_mic_iv(
		mic_iv,
		qc_exists,
		a4_exists,
		message,
		plen-8,
		pn_vector,
		frtype /*  add for CONFIG_IEEE80211W, none 11w also can use */
	);

	construct_mic_header1(
		mic_header1,
		hdrlen,
		message,
		frtype /*  add for CONFIG_IEEE80211W, none 11w also can use */
	);
	construct_mic_header2(
		mic_header2,
		message,
		a4_exists,
		qc_exists
	);


	payload_remainder = (plen-8) % 16;
	num_blocks = (plen-8) / 16;

	/* Find start of payload */
	payload_index = (hdrlen + 8);

	/* Calculate MIC */
	aes128k128d(key, mic_iv, aes_out);
	bitwise_xor(aes_out, mic_header1, chain_buffer);
	aes128k128d(key, chain_buffer, aes_out);
	bitwise_xor(aes_out, mic_header2, chain_buffer);
	aes128k128d(key, chain_buffer, aes_out);

	for (i = 0; i < num_blocks; i++) {
		bitwise_xor(aes_out, &message[payload_index], chain_buffer);

		payload_index += 16;
		aes128k128d(key, chain_buffer, aes_out);
	}

	/* Add on the final payload block if it needs padding */
	if (payload_remainder > 0) {
		for (j = 0; j < 16; j++)
			padded_buffer[j] = 0x00;
		for (j = 0; j < payload_remainder; j++) {
			padded_buffer[j] = message[payload_index++];
		}
		bitwise_xor(aes_out, padded_buffer, chain_buffer);
		aes128k128d(key, chain_buffer, aes_out);

	}

	for (j = 0; j < 8; j++)
		mic[j] = aes_out[j];

	/* Insert MIC into payload */
	for (j = 0; j < 8; j++)
		message[payload_index+j] = mic[j];

	payload_index = hdrlen + 8;
	for (i = 0; i < num_blocks; i++) {
		construct_ctr_preload(
			ctr_preload,
			a4_exists,
			qc_exists,
			message,
			pn_vector,
			i+1,
			frtype
		); /*  add for CONFIG_IEEE80211W, none 11w also can use */
		aes128k128d(key, ctr_preload, aes_out);
		bitwise_xor(aes_out, &message[payload_index], chain_buffer);
		for (j = 0; j < 16; j++)
			message[payload_index++] = chain_buffer[j];
	}

	if (payload_remainder > 0) {
		/* If there is a short final block, then pad it,*/
		/* encrypt it and copy the unpadded part back   */
		construct_ctr_preload(
			ctr_preload,
			a4_exists,
			qc_exists,
			message,
			pn_vector,
			num_blocks+1,
			frtype
		); /*  add for CONFIG_IEEE80211W, none 11w also can use */

		for (j = 0; j < 16; j++)
			padded_buffer[j] = 0x00;
		for (j = 0; j < payload_remainder; j++) {
			padded_buffer[j] = message[payload_index+j];
		}
		aes128k128d(key, ctr_preload, aes_out);
		bitwise_xor(aes_out, padded_buffer, chain_buffer);
		for (j = 0; j < payload_remainder; j++)
			message[payload_index++] = chain_buffer[j];
	}

	/* Encrypt the MIC */
	construct_ctr_preload(
		ctr_preload,
		a4_exists,
		qc_exists,
		message,
		pn_vector,
		0,
		frtype
	); /*  add for CONFIG_IEEE80211W, none 11w also can use */

	for (j = 0; j < 16; j++)
		padded_buffer[j] = 0x00;
	for (j = 0; j < 8; j++) {
		padded_buffer[j] = message[j+hdrlen+8+plen-8];
	}

	aes128k128d(key, ctr_preload, aes_out);
	bitwise_xor(aes_out, padded_buffer, chain_buffer);
	for (j = 0; j < 8; j++)
		message[payload_index++] = chain_buffer[j];

	/* compare the mic */
	for (i = 0; i < 8; i++) {
		if (pframe[hdrlen+8+plen-8+i] != message[hdrlen+8+plen-8+i]) {
			RT_TRACE(_module_rtl871x_security_c_, _drv_err_, ("aes_decipher:mic check error mic[%d]: pframe(%x) != message(%x)\n",
					i, pframe[hdrlen+8+plen-8+i], message[hdrlen+8+plen-8+i]));
			DBG_871X("aes_decipher:mic check error mic[%d]: pframe(%x) != message(%x)\n",
					i, pframe[hdrlen+8+plen-8+i], message[hdrlen+8+plen-8+i]);
			res = _FAIL;
		}
	}
	return res;
}

u32 rtw_aes_decrypt(struct adapter *padapter, u8 *precvframe)
{	/*  exclude ICV */


	/*static*/
/* 	unsigned char message[MAX_MSG_SIZE]; */


	/* Intermediate Buffers */


	sint		length;
	u8 *pframe, *prwskey;	/*  *payload,*iv */
	struct	sta_info 	*stainfo;
	struct	rx_pkt_attrib	 *prxattrib = &((union recv_frame *)precvframe)->u.hdr.attrib;
	struct	security_priv *psecuritypriv = &padapter->securitypriv;
/* 	struct	recv_priv 	*precvpriv =&padapter->recvpriv; */
	u32 res = _SUCCESS;

	pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data;
	/* 4 start to encrypt each fragment */
	if (prxattrib->encrypt == _AES_) {
		stainfo = rtw_get_stainfo(&padapter->stapriv, &prxattrib->ta[0]);
		if (stainfo != NULL) {
			RT_TRACE(_module_rtl871x_security_c_, _drv_err_, ("rtw_aes_decrypt: stainfo!= NULL!!!\n"));

			if (IS_MCAST(prxattrib->ra)) {
				static unsigned long start;
				static u32 no_gkey_bc_cnt;
				static u32 no_gkey_mc_cnt;

				/* DBG_871X("rx bc/mc packets, to perform sw rtw_aes_decrypt\n"); */
				/* prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; */
				if (psecuritypriv->binstallGrpkey == false) {
					res = _FAIL;

					if (start == 0)
						start = jiffies;

					if (is_broadcast_mac_addr(prxattrib->ra))
						no_gkey_bc_cnt++;
					else
						no_gkey_mc_cnt++;

					if (jiffies_to_msecs(jiffies - start) > 1000) {
						if (no_gkey_bc_cnt || no_gkey_mc_cnt) {
							DBG_871X_LEVEL(_drv_always_, FUNC_ADPT_FMT" no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n",
								FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt);
						}
						start = jiffies;
						no_gkey_bc_cnt = 0;
						no_gkey_mc_cnt = 0;
					}

					goto exit;
				}

				if (no_gkey_bc_cnt || no_gkey_mc_cnt) {
					DBG_871X_LEVEL(_drv_always_, FUNC_ADPT_FMT" gkey installed. no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n",
						FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt);
				}
				start = 0;
				no_gkey_bc_cnt = 0;
				no_gkey_mc_cnt = 0;

				prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey;
				if (psecuritypriv->dot118021XGrpKeyid != prxattrib->key_index) {
					DBG_871X("not match packet_index =%d, install_index =%d\n"
					, prxattrib->key_index, psecuritypriv->dot118021XGrpKeyid);
					res = _FAIL;
					goto exit;
				}
			} else
				prwskey = &stainfo->dot118021x_UncstKey.skey[0];


			length = ((union recv_frame *)precvframe)->u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len;

			res = aes_decipher(prwskey, prxattrib->hdrlen, pframe, length);

			AES_SW_DEC_CNT_INC(psecuritypriv, prxattrib->ra);
		} else {
			RT_TRACE(_module_rtl871x_security_c_, _drv_err_, ("rtw_aes_decrypt: stainfo == NULL!!!\n"));
			res = _FAIL;
		}
	}
exit:
	return res;
}

u32 rtw_BIP_verify(struct adapter *padapter, u8 *precvframe)
{
	struct rx_pkt_attrib *pattrib = &((union recv_frame *)precvframe)->u.hdr.attrib;
	u8 *pframe;
	u8 *BIP_AAD, *p;
	u32 res = _FAIL;
	uint len, ori_len;
	struct ieee80211_hdr *pwlanhdr;
	u8 mic[16];
	struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
	__le16 le_tmp;
	__le64 le_tmp64;

	ori_len = pattrib->pkt_len-WLAN_HDR_A3_LEN+BIP_AAD_SIZE;
	BIP_AAD = rtw_zmalloc(ori_len);

	if (BIP_AAD == NULL) {
		DBG_871X("BIP AAD allocate fail\n");
		return _FAIL;
	}
	/* PKT start */
	pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data;
	/* mapping to wlan header */
	pwlanhdr = (struct ieee80211_hdr *)pframe;
	/* save the frame body + MME */
	memcpy(BIP_AAD+BIP_AAD_SIZE, pframe+WLAN_HDR_A3_LEN, pattrib->pkt_len-WLAN_HDR_A3_LEN);
	/* find MME IE pointer */
	p = rtw_get_ie(BIP_AAD+BIP_AAD_SIZE, _MME_IE_, &len, pattrib->pkt_len-WLAN_HDR_A3_LEN);
	/* Baron */
	if (p) {
		u16 keyid = 0;
		u64 temp_ipn = 0;
		/* save packet number */
		memcpy(&le_tmp64, p+4, 6);
		temp_ipn = le64_to_cpu(le_tmp64);
		/* BIP packet number should bigger than previous BIP packet */
		if (temp_ipn <= pmlmeext->mgnt_80211w_IPN_rx) {
			DBG_871X("replay BIP packet\n");
			goto BIP_exit;
		}
		/* copy key index */
		memcpy(&le_tmp, p+2, 2);
		keyid = le16_to_cpu(le_tmp);
		if (keyid != padapter->securitypriv.dot11wBIPKeyid) {
			DBG_871X("BIP key index error!\n");
			goto BIP_exit;
		}
		/* clear the MIC field of MME to zero */
		memset(p+2+len-8, 0, 8);

		/* conscruct AAD, copy frame control field */
		memcpy(BIP_AAD, &pwlanhdr->frame_control, 2);
		ClearRetry(BIP_AAD);
		ClearPwrMgt(BIP_AAD);
		ClearMData(BIP_AAD);
		/* conscruct AAD, copy address 1 to address 3 */
		memcpy(BIP_AAD+2, pwlanhdr->addr1, 18);

		if (omac1_aes_128(padapter->securitypriv.dot11wBIPKey[padapter->securitypriv.dot11wBIPKeyid].skey
			, BIP_AAD, ori_len, mic))
			goto BIP_exit;

		/* MIC field should be last 8 bytes of packet (packet without FCS) */
		if (!memcmp(mic, pframe+pattrib->pkt_len-8, 8)) {
			pmlmeext->mgnt_80211w_IPN_rx = temp_ipn;
			res = _SUCCESS;
		} else
			DBG_871X("BIP MIC error!\n");

	} else
		res = RTW_RX_HANDLED;
BIP_exit:

	kfree(BIP_AAD);
	return res;
}

/* AES tables*/
const u32 Te0[256] = {
	0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
	0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,
	0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,
	0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,
	0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U,
	0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU,
	0x41adadecU, 0xb3d4d467U, 0x5fa2a2fdU, 0x45afafeaU,
	0x239c9cbfU, 0x53a4a4f7U, 0xe4727296U, 0x9bc0c05bU,
	0x75b7b7c2U, 0xe1fdfd1cU, 0x3d9393aeU, 0x4c26266aU,
	0x6c36365aU, 0x7e3f3f41U, 0xf5f7f702U, 0x83cccc4fU,
	0x6834345cU, 0x51a5a5f4U, 0xd1e5e534U, 0xf9f1f108U,
	0xe2717193U, 0xabd8d873U, 0x62313153U, 0x2a15153fU,
	0x0804040cU, 0x95c7c752U, 0x46232365U, 0x9dc3c35eU,
	0x30181828U, 0x379696a1U, 0x0a05050fU, 0x2f9a9ab5U,
	0x0e070709U, 0x24121236U, 0x1b80809bU, 0xdfe2e23dU,
	0xcdebeb26U, 0x4e272769U, 0x7fb2b2cdU, 0xea75759fU,
	0x1209091bU, 0x1d83839eU, 0x582c2c74U, 0x341a1a2eU,
	0x361b1b2dU, 0xdc6e6eb2U, 0xb45a5aeeU, 0x5ba0a0fbU,
	0xa45252f6U, 0x763b3b4dU, 0xb7d6d661U, 0x7db3b3ceU,
	0x5229297bU, 0xdde3e33eU, 0x5e2f2f71U, 0x13848497U,
	0xa65353f5U, 0xb9d1d168U, 0x00000000U, 0xc1eded2cU,
	0x40202060U, 0xe3fcfc1fU, 0x79b1b1c8U, 0xb65b5bedU,
	0xd46a6abeU, 0x8dcbcb46U, 0x67bebed9U, 0x7239394bU,
	0x944a4adeU, 0x984c4cd4U, 0xb05858e8U, 0x85cfcf4aU,
	0xbbd0d06bU, 0xc5efef2aU, 0x4faaaae5U, 0xedfbfb16U,
	0x864343c5U, 0x9a4d4dd7U, 0x66333355U, 0x11858594U,
	0x8a4545cfU, 0xe9f9f910U, 0x04020206U, 0xfe7f7f81U,
	0xa05050f0U, 0x783c3c44U, 0x259f9fbaU, 0x4ba8a8e3U,
	0xa25151f3U, 0x5da3a3feU, 0x804040c0U, 0x058f8f8aU,
	0x3f9292adU, 0x219d9dbcU, 0x70383848U, 0xf1f5f504U,
	0x63bcbcdfU, 0x77b6b6c1U, 0xafdada75U, 0x42212163U,
	0x20101030U, 0xe5ffff1aU, 0xfdf3f30eU, 0xbfd2d26dU,
	0x81cdcd4cU, 0x180c0c14U, 0x26131335U, 0xc3ecec2fU,
	0xbe5f5fe1U, 0x359797a2U, 0x884444ccU, 0x2e171739U,
	0x93c4c457U, 0x55a7a7f2U, 0xfc7e7e82U, 0x7a3d3d47U,
	0xc86464acU, 0xba5d5de7U, 0x3219192bU, 0xe6737395U,
	0xc06060a0U, 0x19818198U, 0x9e4f4fd1U, 0xa3dcdc7fU,
	0x44222266U, 0x542a2a7eU, 0x3b9090abU, 0x0b888883U,
	0x8c4646caU, 0xc7eeee29U, 0x6bb8b8d3U, 0x2814143cU,
	0xa7dede79U, 0xbc5e5ee2U, 0x160b0b1dU, 0xaddbdb76U,
	0xdbe0e03bU, 0x64323256U, 0x743a3a4eU, 0x140a0a1eU,
	0x924949dbU, 0x0c06060aU, 0x4824246cU, 0xb85c5ce4U,
	0x9fc2c25dU, 0xbdd3d36eU, 0x43acacefU, 0xc46262a6U,
	0x399191a8U, 0x319595a4U, 0xd3e4e437U, 0xf279798bU,
	0xd5e7e732U, 0x8bc8c843U, 0x6e373759U, 0xda6d6db7U,
	0x018d8d8cU, 0xb1d5d564U, 0x9c4e4ed2U, 0x49a9a9e0U,
	0xd86c6cb4U, 0xac5656faU, 0xf3f4f407U, 0xcfeaea25U,
	0xca6565afU, 0xf47a7a8eU, 0x47aeaee9U, 0x10080818U,
	0x6fbabad5U, 0xf0787888U, 0x4a25256fU, 0x5c2e2e72U,
	0x381c1c24U, 0x57a6a6f1U, 0x73b4b4c7U, 0x97c6c651U,
	0xcbe8e823U, 0xa1dddd7cU, 0xe874749cU, 0x3e1f1f21U,
	0x964b4bddU, 0x61bdbddcU, 0x0d8b8b86U, 0x0f8a8a85U,
	0xe0707090U, 0x7c3e3e42U, 0x71b5b5c4U, 0xcc6666aaU,
	0x904848d8U, 0x06030305U, 0xf7f6f601U, 0x1c0e0e12U,
	0xc26161a3U, 0x6a35355fU, 0xae5757f9U, 0x69b9b9d0U,
	0x17868691U, 0x99c1c158U, 0x3a1d1d27U, 0x279e9eb9U,
	0xd9e1e138U, 0xebf8f813U, 0x2b9898b3U, 0x22111133U,
	0xd26969bbU, 0xa9d9d970U, 0x078e8e89U, 0x339494a7U,
	0x2d9b9bb6U, 0x3c1e1e22U, 0x15878792U, 0xc9e9e920U,
	0x87cece49U, 0xaa5555ffU, 0x50282878U, 0xa5dfdf7aU,
	0x038c8c8fU, 0x59a1a1f8U, 0x09898980U, 0x1a0d0d17U,
	0x65bfbfdaU, 0xd7e6e631U, 0x844242c6U, 0xd06868b8U,
	0x824141c3U, 0x299999b0U, 0x5a2d2d77U, 0x1e0f0f11U,
	0x7bb0b0cbU, 0xa85454fcU, 0x6dbbbbd6U, 0x2c16163aU,
};
const u32 Td0[256] = {
	0x51f4a750U, 0x7e416553U, 0x1a17a4c3U, 0x3a275e96U,
	0x3bab6bcbU, 0x1f9d45f1U, 0xacfa58abU, 0x4be30393U,
	0x2030fa55U, 0xad766df6U, 0x88cc7691U, 0xf5024c25U,
	0x4fe5d7fcU, 0xc52acbd7U, 0x26354480U, 0xb562a38fU,
	0xdeb15a49U, 0x25ba1b67U, 0x45ea0e98U, 0x5dfec0e1U,
	0xc32f7502U, 0x814cf012U, 0x8d4697a3U, 0x6bd3f9c6U,
	0x038f5fe7U, 0x15929c95U, 0xbf6d7aebU, 0x955259daU,
	0xd4be832dU, 0x587421d3U, 0x49e06929U, 0x8ec9c844U,
	0x75c2896aU, 0xf48e7978U, 0x99583e6bU, 0x27b971ddU,
	0xbee14fb6U, 0xf088ad17U, 0xc920ac66U, 0x7dce3ab4U,
	0x63df4a18U, 0xe51a3182U, 0x97513360U, 0x62537f45U,
	0xb16477e0U, 0xbb6bae84U, 0xfe81a01cU, 0xf9082b94U,
	0x70486858U, 0x8f45fd19U, 0x94de6c87U, 0x527bf8b7U,
	0xab73d323U, 0x724b02e2U, 0xe31f8f57U, 0x6655ab2aU,
	0xb2eb2807U, 0x2fb5c203U, 0x86c57b9aU, 0xd33708a5U,
	0x302887f2U, 0x23bfa5b2U, 0x02036abaU, 0xed16825cU,
	0x8acf1c2bU, 0xa779b492U, 0xf307f2f0U, 0x4e69e2a1U,
	0x65daf4cdU, 0x0605bed5U, 0xd134621fU, 0xc4a6fe8aU,
	0x342e539dU, 0xa2f355a0U, 0x058ae132U, 0xa4f6eb75U,
	0x0b83ec39U, 0x4060efaaU, 0x5e719f06U, 0xbd6e1051U,
	0x3e218af9U, 0x96dd063dU, 0xdd3e05aeU, 0x4de6bd46U,
	0x91548db5U, 0x71c45d05U, 0x0406d46fU, 0x605015ffU,
	0x1998fb24U, 0xd6bde997U, 0x894043ccU, 0x67d99e77U,
	0xb0e842bdU, 0x07898b88U, 0xe7195b38U, 0x79c8eedbU,
	0xa17c0a47U, 0x7c420fe9U, 0xf8841ec9U, 0x00000000U,
	0x09808683U, 0x322bed48U, 0x1e1170acU, 0x6c5a724eU,
	0xfd0efffbU, 0x0f853856U, 0x3daed51eU, 0x362d3927U,
	0x0a0fd964U, 0x685ca621U, 0x9b5b54d1U, 0x24362e3aU,
	0x0c0a67b1U, 0x9357e70fU, 0xb4ee96d2U, 0x1b9b919eU,
	0x80c0c54fU, 0x61dc20a2U, 0x5a774b69U, 0x1c121a16U,
	0xe293ba0aU, 0xc0a02ae5U, 0x3c22e043U, 0x121b171dU,
	0x0e090d0bU, 0xf28bc7adU, 0x2db6a8b9U, 0x141ea9c8U,
	0x57f11985U, 0xaf75074cU, 0xee99ddbbU, 0xa37f60fdU,
	0xf701269fU, 0x5c72f5bcU, 0x44663bc5U, 0x5bfb7e34U,
	0x8b432976U, 0xcb23c6dcU, 0xb6edfc68U, 0xb8e4f163U,
	0xd731dccaU, 0x42638510U, 0x13972240U, 0x84c61120U,
	0x854a247dU, 0xd2bb3df8U, 0xaef93211U, 0xc729a16dU,
	0x1d9e2f4bU, 0xdcb230f3U, 0x0d8652ecU, 0x77c1e3d0U,
	0x2bb3166cU, 0xa970b999U, 0x119448faU, 0x47e96422U,
	0xa8fc8cc4U, 0xa0f03f1aU, 0x567d2cd8U, 0x223390efU,
	0x87494ec7U, 0xd938d1c1U, 0x8ccaa2feU, 0x98d40b36U,
	0xa6f581cfU, 0xa57ade28U, 0xdab78e26U, 0x3fadbfa4U,
	0x2c3a9de4U, 0x5078920dU, 0x6a5fcc9bU, 0x547e4662U,
	0xf68d13c2U, 0x90d8b8e8U, 0x2e39f75eU, 0x82c3aff5U,
	0x9f5d80beU, 0x69d0937cU, 0x6fd52da9U, 0xcf2512b3U,
	0xc8ac993bU, 0x10187da7U, 0xe89c636eU, 0xdb3bbb7bU,
	0xcd267809U, 0x6e5918f4U, 0xec9ab701U, 0x834f9aa8U,
	0xe6956e65U, 0xaaffe67eU, 0x21bccf08U, 0xef15e8e6U,
	0xbae79bd9U, 0x4a6f36ceU, 0xea9f09d4U, 0x29b07cd6U,
	0x31a4b2afU, 0x2a3f2331U, 0xc6a59430U, 0x35a266c0U,
	0x744ebc37U, 0xfc82caa6U, 0xe090d0b0U, 0x33a7d815U,
	0xf104984aU, 0x41ecdaf7U, 0x7fcd500eU, 0x1791f62fU,
	0x764dd68dU, 0x43efb04dU, 0xccaa4d54U, 0xe49604dfU,
	0x9ed1b5e3U, 0x4c6a881bU, 0xc12c1fb8U, 0x4665517fU,
	0x9d5eea04U, 0x018c355dU, 0xfa877473U, 0xfb0b412eU,
	0xb3671d5aU, 0x92dbd252U, 0xe9105633U, 0x6dd64713U,
	0x9ad7618cU, 0x37a10c7aU, 0x59f8148eU, 0xeb133c89U,
	0xcea927eeU, 0xb761c935U, 0xe11ce5edU, 0x7a47b13cU,
	0x9cd2df59U, 0x55f2733fU, 0x1814ce79U, 0x73c737bfU,
	0x53f7cdeaU, 0x5ffdaa5bU, 0xdf3d6f14U, 0x7844db86U,
	0xcaaff381U, 0xb968c43eU, 0x3824342cU, 0xc2a3405fU,
	0x161dc372U, 0xbce2250cU, 0x283c498bU, 0xff0d9541U,
	0x39a80171U, 0x080cb3deU, 0xd8b4e49cU, 0x6456c190U,
	0x7bcb8461U, 0xd532b670U, 0x486c5c74U, 0xd0b85742U,
};
const u8 Td4s[256] = {
	0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U,
	0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU,
	0x7cU, 0xe3U, 0x39U, 0x82U, 0x9bU, 0x2fU, 0xffU, 0x87U,
	0x34U, 0x8eU, 0x43U, 0x44U, 0xc4U, 0xdeU, 0xe9U, 0xcbU,
	0x54U, 0x7bU, 0x94U, 0x32U, 0xa6U, 0xc2U, 0x23U, 0x3dU,
	0xeeU, 0x4cU, 0x95U, 0x0bU, 0x42U, 0xfaU, 0xc3U, 0x4eU,
	0x08U, 0x2eU, 0xa1U, 0x66U, 0x28U, 0xd9U, 0x24U, 0xb2U,
	0x76U, 0x5bU, 0xa2U, 0x49U, 0x6dU, 0x8bU, 0xd1U, 0x25U,
	0x72U, 0xf8U, 0xf6U, 0x64U, 0x86U, 0x68U, 0x98U, 0x16U,
	0xd4U, 0xa4U, 0x5cU, 0xccU, 0x5dU, 0x65U, 0xb6U, 0x92U,
	0x6cU, 0x70U, 0x48U, 0x50U, 0xfdU, 0xedU, 0xb9U, 0xdaU,
	0x5eU, 0x15U, 0x46U, 0x57U, 0xa7U, 0x8dU, 0x9dU, 0x84U,
	0x90U, 0xd8U, 0xabU, 0x00U, 0x8cU, 0xbcU, 0xd3U, 0x0aU,
	0xf7U, 0xe4U, 0x58U, 0x05U, 0xb8U, 0xb3U, 0x45U, 0x06U,
	0xd0U, 0x2cU, 0x1eU, 0x8fU, 0xcaU, 0x3fU, 0x0fU, 0x02U,
	0xc1U, 0xafU, 0xbdU, 0x03U, 0x01U, 0x13U, 0x8aU, 0x6bU,
	0x3aU, 0x91U, 0x11U, 0x41U, 0x4fU, 0x67U, 0xdcU, 0xeaU,
	0x97U, 0xf2U, 0xcfU, 0xceU, 0xf0U, 0xb4U, 0xe6U, 0x73U,
	0x96U, 0xacU, 0x74U, 0x22U, 0xe7U, 0xadU, 0x35U, 0x85U,
	0xe2U, 0xf9U, 0x37U, 0xe8U, 0x1cU, 0x75U, 0xdfU, 0x6eU,
	0x47U, 0xf1U, 0x1aU, 0x71U, 0x1dU, 0x29U, 0xc5U, 0x89U,
	0x6fU, 0xb7U, 0x62U, 0x0eU, 0xaaU, 0x18U, 0xbeU, 0x1bU,
	0xfcU, 0x56U, 0x3eU, 0x4bU, 0xc6U, 0xd2U, 0x79U, 0x20U,
	0x9aU, 0xdbU, 0xc0U, 0xfeU, 0x78U, 0xcdU, 0x5aU, 0xf4U,
	0x1fU, 0xddU, 0xa8U, 0x33U, 0x88U, 0x07U, 0xc7U, 0x31U,
	0xb1U, 0x12U, 0x10U, 0x59U, 0x27U, 0x80U, 0xecU, 0x5fU,
	0x60U, 0x51U, 0x7fU, 0xa9U, 0x19U, 0xb5U, 0x4aU, 0x0dU,
	0x2dU, 0xe5U, 0x7aU, 0x9fU, 0x93U, 0xc9U, 0x9cU, 0xefU,
	0xa0U, 0xe0U, 0x3bU, 0x4dU, 0xaeU, 0x2aU, 0xf5U, 0xb0U,
	0xc8U, 0xebU, 0xbbU, 0x3cU, 0x83U, 0x53U, 0x99U, 0x61U,
	0x17U, 0x2bU, 0x04U, 0x7eU, 0xbaU, 0x77U, 0xd6U, 0x26U,
	0xe1U, 0x69U, 0x14U, 0x63U, 0x55U, 0x21U, 0x0cU, 0x7dU,
};
const u8 rcons[] = {
	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36
	/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
};

/**
 * Expand the cipher key into the encryption key schedule.
 *
 * @return	the number of rounds for the given cipher key size.
 */
static void rijndaelKeySetupEnc(u32 rk[/*44*/], const u8 cipherKey[])
{
	int i;
	u32 temp;

	rk[0] = GETU32(cipherKey);
	rk[1] = GETU32(cipherKey +  4);
	rk[2] = GETU32(cipherKey +  8);
	rk[3] = GETU32(cipherKey + 12);
	for (i = 0; i < 10; i++) {
		temp  = rk[3];
		rk[4] = rk[0] ^
			TE421(temp) ^ TE432(temp) ^ TE443(temp) ^ TE414(temp) ^
			RCON(i);
		rk[5] = rk[1] ^ rk[4];
		rk[6] = rk[2] ^ rk[5];
		rk[7] = rk[3] ^ rk[6];
		rk += 4;
	}
}

static void rijndaelEncrypt(u32 rk[/*44*/], u8 pt[16], u8 ct[16])
{
	u32 s0, s1, s2, s3, t0, t1, t2, t3;
	int Nr = 10;
	int r;

	/*
	 * map byte array block to cipher state
	 * and add initial round key:
	 */
	s0 = GETU32(pt) ^ rk[0];
	s1 = GETU32(pt +  4) ^ rk[1];
	s2 = GETU32(pt +  8) ^ rk[2];
	s3 = GETU32(pt + 12) ^ rk[3];

#define ROUND(i, d, s) \
d##0 = TE0(s##0) ^ TE1(s##1) ^ TE2(s##2) ^ TE3(s##3) ^ rk[4 * i]; \
d##1 = TE0(s##1) ^ TE1(s##2) ^ TE2(s##3) ^ TE3(s##0) ^ rk[4 * i + 1]; \
d##2 = TE0(s##2) ^ TE1(s##3) ^ TE2(s##0) ^ TE3(s##1) ^ rk[4 * i + 2]; \
d##3 = TE0(s##3) ^ TE1(s##0) ^ TE2(s##1) ^ TE3(s##2) ^ rk[4 * i + 3]

	/* Nr - 1 full rounds: */
	r = Nr >> 1;
	for (;;) {
		ROUND(1, t, s);
		rk += 8;
		if (--r == 0)
			break;
		ROUND(0, s, t);
	}

#undef ROUND

	/*
	 * apply last round and
	 * map cipher state to byte array block:
	 */
	s0 = TE41(t0) ^ TE42(t1) ^ TE43(t2) ^ TE44(t3) ^ rk[0];
	PUTU32(ct, s0);
	s1 = TE41(t1) ^ TE42(t2) ^ TE43(t3) ^ TE44(t0) ^ rk[1];
	PUTU32(ct +  4, s1);
	s2 = TE41(t2) ^ TE42(t3) ^ TE43(t0) ^ TE44(t1) ^ rk[2];
	PUTU32(ct +  8, s2);
	s3 = TE41(t3) ^ TE42(t0) ^ TE43(t1) ^ TE44(t2) ^ rk[3];
	PUTU32(ct + 12, s3);
}

static void *aes_encrypt_init(u8 *key, size_t len)
{
	u32 *rk;
	if (len != 16)
		return NULL;
	rk = rtw_malloc(AES_PRIV_SIZE);
	if (rk == NULL)
		return NULL;
	rijndaelKeySetupEnc(rk, key);
	return rk;
}

static void aes_128_encrypt(void *ctx, u8 *plain, u8 *crypt)
{
	rijndaelEncrypt(ctx, plain, crypt);
}


static void gf_mulx(u8 *pad)
{
	int i, carry;

	carry = pad[0] & 0x80;
	for (i = 0; i < AES_BLOCK_SIZE - 1; i++)
		pad[i] = (pad[i] << 1) | (pad[i + 1] >> 7);

	pad[AES_BLOCK_SIZE - 1] <<= 1;
	if (carry)
		pad[AES_BLOCK_SIZE - 1] ^= 0x87;
}

static void aes_encrypt_deinit(void *ctx)
{
	memset(ctx, 0, AES_PRIV_SIZE);
	kfree(ctx);
}


/**
 * omac1_aes_128_vector - One-Key CBC MAC (OMAC1) hash with AES-128
 * @key: 128-bit key for the hash operation
 * @num_elem: Number of elements in the data vector
 * @addr: Pointers to the data areas
 * @len: Lengths of the data blocks
 * @mac: Buffer for MAC (128 bits, i.e., 16 bytes)
 * Returns: 0 on success, -1 on failure
 *
 * This is a mode for using block cipher (AES in this case) for authentication.
 * OMAC1 was standardized with the name CMAC by NIST in a Special Publication
 * (SP) 800-38B.
 */
static int omac1_aes_128_vector(u8 *key, size_t num_elem,
							 u8 *addr[], size_t *len, u8 *mac)
{
	void *ctx;
	u8 cbc[AES_BLOCK_SIZE], pad[AES_BLOCK_SIZE];
	u8 *pos, *end;
	size_t i, e, left, total_len;

	ctx = aes_encrypt_init(key, 16);
	if (ctx == NULL)
		return -1;
	memset(cbc, 0, AES_BLOCK_SIZE);

	total_len = 0;
	for (e = 0; e < num_elem; e++)
		total_len += len[e];
	left = total_len;

	e = 0;
	pos = addr[0];
	end = pos + len[0];

	while (left >= AES_BLOCK_SIZE) {
		for (i = 0; i < AES_BLOCK_SIZE; i++) {
			cbc[i] ^= *pos++;
			if (pos >= end) {
				e++;
				pos = addr[e];
				end = pos + len[e];
			}
		}
		if (left > AES_BLOCK_SIZE)
			aes_128_encrypt(ctx, cbc, cbc);
		left -= AES_BLOCK_SIZE;
	}

	memset(pad, 0, AES_BLOCK_SIZE);
	aes_128_encrypt(ctx, pad, pad);
	gf_mulx(pad);

	if (left || total_len == 0) {
		for (i = 0; i < left; i++) {
			cbc[i] ^= *pos++;
			if (pos >= end) {
				e++;
				pos = addr[e];
				end = pos + len[e];
			}
		}
		cbc[left] ^= 0x80;
		gf_mulx(pad);
	}

	for (i = 0; i < AES_BLOCK_SIZE; i++)
		pad[i] ^= cbc[i];
	aes_128_encrypt(ctx, pad, mac);
	aes_encrypt_deinit(ctx);
	return 0;
}


/**
 * omac1_aes_128 - One-Key CBC MAC (OMAC1) hash with AES-128 (aka AES-CMAC)
 * @key: 128-bit key for the hash operation
 * @data: Data buffer for which a MAC is determined
 * @data_len: Length of data buffer in bytes
 * @mac: Buffer for MAC (128 bits, i.e., 16 bytes)
 * Returns: 0 on success, -1 on failure
 *
 * This is a mode for using block cipher (AES in this case) for authentication.
 * OMAC1 was standardized with the name CMAC by NIST in a Special Publication
 * (SP) 800-38B.
 * modify for CONFIG_IEEE80211W */
int omac1_aes_128(u8 *key, u8 *data, size_t data_len, u8 *mac)
{
	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
}

/* Restore HW wep key setting according to key_mask */
void rtw_sec_restore_wep_key(struct adapter *adapter)
{
	struct security_priv *securitypriv = &(adapter->securitypriv);
	sint keyid;

	if ((_WEP40_ == securitypriv->dot11PrivacyAlgrthm) || (_WEP104_ == securitypriv->dot11PrivacyAlgrthm)) {
		for (keyid = 0; keyid < 4; keyid++) {
			if (securitypriv->key_mask & BIT(keyid)) {
				if (keyid == securitypriv->dot11PrivacyKeyIndex)
					rtw_set_key(adapter, securitypriv, keyid, 1, false);
				else
					rtw_set_key(adapter, securitypriv, keyid, 0, false);
			}
		}
	}
}

u8 rtw_handle_tkip_countermeasure(struct adapter *adapter, const char *caller)
{
	struct security_priv *securitypriv = &(adapter->securitypriv);
	u8 status = _SUCCESS;

	if (securitypriv->btkip_countermeasure == true) {
		unsigned long passing_ms = jiffies_to_msecs(jiffies - securitypriv->btkip_countermeasure_time);
		if (passing_ms > 60*1000) {
			DBG_871X_LEVEL(_drv_always_, "%s("ADPT_FMT") countermeasure time:%lus > 60s\n",
				caller, ADPT_ARG(adapter), passing_ms/1000);
			securitypriv->btkip_countermeasure = false;
			securitypriv->btkip_countermeasure_time = 0;
		} else {
			DBG_871X_LEVEL(_drv_always_, "%s("ADPT_FMT") countermeasure time:%lus < 60s\n",
				caller, ADPT_ARG(adapter), passing_ms/1000);
			status = _FAIL;
		}
	}

	return status;
}